Identification of synaptic connections in neural ensembles by graphical models

A method for the identification of direct synaptic connections in a larger neural net is presented. It is based on a conditional correlation graph for multivariate point processes. The connections are identified via the partial spectral coherence of two neurons, given all others. It is shown how the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Dahlhaus, Rainer (VerfasserIn) , Eichler, Michael (VerfasserIn) , Sandkühler, Jürgen (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 1997
In: Journal of neuroscience methods
Year: 1997, Jahrgang: 77, Heft: 1, Pages: 93-107
ISSN:1872-678X
DOI:10.1016/S0165-0270(97)00100-3
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1016/S0165-0270(97)00100-3
Verlag, lizenzpflichtig, Volltext: https://www.sciencedirect.com/science/article/pii/S0165027097001003
Volltext
Verfasserangaben:Rainer Dahlhaus, Michael Eichler, Jürgen Sandkühler
Beschreibung
Zusammenfassung:A method for the identification of direct synaptic connections in a larger neural net is presented. It is based on a conditional correlation graph for multivariate point processes. The connections are identified via the partial spectral coherence of two neurons, given all others. It is shown how these coherences can be calculated by inversion of the spectral density matrix. In simulations with GENESIS, we discuss the relevance of the method for identifying different neural ensembles including an excitatory feedback loop and networks with lateral inhibitions.
Beschreibung:Online 13 January 1998
Gesehen am 03.05.2021
Beschreibung:Online Resource
ISSN:1872-678X
DOI:10.1016/S0165-0270(97)00100-3