Strength in numbers: predicting response to checkpoint inhibitors from large clinical datasets

The advent of immune checkpoint blockers for cancer therapy has spawned great interest in identifying molecular features reflecting the complexity of tumor immunity, which can subsequently be leveraged as predictive biomarkers. In a thorough big-data approach analyzing the largest series of homogeni...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Stenzinger, Albrecht (VerfasserIn) , Kazdal, Daniel (VerfasserIn) , Peters, Solange (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 27 January 2021
In: Cell
Year: 2021, Jahrgang: 184, Heft: 3, Pages: 571-573
ISSN:1097-4172
DOI:10.1016/j.cell.2021.01.008
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1016/j.cell.2021.01.008
Verlag, lizenzpflichtig, Volltext: https://www.sciencedirect.com/science/article/pii/S0092867421000088
Volltext
Verfasserangaben:Albrecht Stenzinger, Daniel Kazdal, and Solange Peters

MARC

LEADER 00000caa a2200000 c 4500
001 1757244735
003 DE-627
005 20240413193345.0
007 cr uuu---uuuuu
008 210506s2021 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.cell.2021.01.008  |2 doi 
035 |a (DE-627)1757244735 
035 |a (DE-599)KXP1757244735 
035 |a (OCoLC)1341408335 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 33  |2 sdnb 
100 1 |a Stenzinger, Albrecht  |e VerfasserIn  |0 (DE-588)139606106  |0 (DE-627)703395238  |0 (DE-576)312432755  |4 aut 
245 1 0 |a Strength in numbers  |b predicting response to checkpoint inhibitors from large clinical datasets  |c Albrecht Stenzinger, Daniel Kazdal, and Solange Peters 
264 1 |c 27 January 2021 
300 |a 3 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 06.05.2021 
520 |a The advent of immune checkpoint blockers for cancer therapy has spawned great interest in identifying molecular features reflecting the complexity of tumor immunity, which can subsequently be leveraged as predictive biomarkers. In a thorough big-data approach analyzing the largest series of homogenized molecular and clinical datasets, Litchfield et al. identified a set of genomic biomarkers that identifies immunotherapy responders across cancer types. 
700 1 |a Kazdal, Daniel  |d 1983-  |e VerfasserIn  |0 (DE-588)114929650X  |0 (DE-627)1009614088  |0 (DE-576)496635867  |4 aut 
700 1 |a Peters, Solange  |d 1972-  |e VerfasserIn  |0 (DE-588)113195274X  |0 (DE-627)887311555  |0 (DE-576)488580404  |4 aut 
773 0 8 |i Enthalten in  |t Cell  |d [Cambridge, Mass.] : Cell Press, 1974  |g 184(2021), 3, Seite 571-573  |h Online-Ressource  |w (DE-627)320416127  |w (DE-600)2001951-8  |w (DE-576)090881370  |x 1097-4172  |7 nnas  |a Strength in numbers predicting response to checkpoint inhibitors from large clinical datasets 
773 1 8 |g volume:184  |g year:2021  |g number:3  |g pages:571-573  |g extent:3  |a Strength in numbers predicting response to checkpoint inhibitors from large clinical datasets 
856 4 0 |u https://doi.org/10.1016/j.cell.2021.01.008  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u https://www.sciencedirect.com/science/article/pii/S0092867421000088  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20210506 
993 |a Article 
994 |a 2021 
998 |g 114929650X  |a Kazdal, Daniel  |m 114929650X:Kazdal, Daniel  |d 910000  |d 912000  |e 910000PK114929650X  |e 912000PK114929650X  |k 0/910000/  |k 1/910000/912000/  |p 2 
998 |g 139606106  |a Stenzinger, Albrecht  |m 139606106:Stenzinger, Albrecht  |d 910000  |d 912000  |e 910000PS139606106  |e 912000PS139606106  |k 0/910000/  |k 1/910000/912000/  |p 1  |x j 
999 |a KXP-PPN1757244735  |e 3924130353 
BIB |a Y 
SER |a journal 
JSO |a {"language":["eng"],"recId":"1757244735","type":{"media":"Online-Ressource","bibl":"article-journal"},"note":["Gesehen am 06.05.2021"],"person":[{"given":"Albrecht","family":"Stenzinger","role":"aut","roleDisplay":"VerfasserIn","display":"Stenzinger, Albrecht"},{"family":"Kazdal","given":"Daniel","roleDisplay":"VerfasserIn","display":"Kazdal, Daniel","role":"aut"},{"role":"aut","roleDisplay":"VerfasserIn","display":"Peters, Solange","given":"Solange","family":"Peters"}],"title":[{"title_sort":"Strength in numbers","subtitle":"predicting response to checkpoint inhibitors from large clinical datasets","title":"Strength in numbers"}],"relHost":[{"physDesc":[{"extent":"Online-Ressource"}],"id":{"issn":["1097-4172"],"eki":["320416127"],"zdb":["2001951-8"]},"origin":[{"publisher":"Cell Press ; Elsevier","dateIssuedKey":"1974","dateIssuedDisp":"1974-","publisherPlace":"[Cambridge, Mass.] ; New York, NY"}],"part":{"pages":"571-573","issue":"3","year":"2021","extent":"3","volume":"184","text":"184(2021), 3, Seite 571-573"},"pubHistory":["1.1974 -"],"language":["eng"],"recId":"320416127","disp":"Strength in numbers predicting response to checkpoint inhibitors from large clinical datasetsCell","note":["Gesehen am 11.03.24"],"type":{"media":"Online-Ressource","bibl":"periodical"},"title":[{"title":"Cell","title_sort":"Cell"}]}],"physDesc":[{"extent":"3 S."}],"name":{"displayForm":["Albrecht Stenzinger, Daniel Kazdal, and Solange Peters"]},"id":{"eki":["1757244735"],"doi":["10.1016/j.cell.2021.01.008"]},"origin":[{"dateIssuedDisp":"27 January 2021","dateIssuedKey":"2021"}]} 
SRT |a STENZINGERSTRENGTHIN2720