Strength in numbers: predicting response to checkpoint inhibitors from large clinical datasets
The advent of immune checkpoint blockers for cancer therapy has spawned great interest in identifying molecular features reflecting the complexity of tumor immunity, which can subsequently be leveraged as predictive biomarkers. In a thorough big-data approach analyzing the largest series of homogeni...
Gespeichert in:
| Hauptverfasser: | , , |
|---|---|
| Dokumenttyp: | Article (Journal) |
| Sprache: | Englisch |
| Veröffentlicht: |
27 January 2021
|
| In: |
Cell
Year: 2021, Jahrgang: 184, Heft: 3, Pages: 571-573 |
| ISSN: | 1097-4172 |
| DOI: | 10.1016/j.cell.2021.01.008 |
| Online-Zugang: | Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1016/j.cell.2021.01.008 Verlag, lizenzpflichtig, Volltext: https://www.sciencedirect.com/science/article/pii/S0092867421000088 |
| Verfasserangaben: | Albrecht Stenzinger, Daniel Kazdal, and Solange Peters |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1757244735 | ||
| 003 | DE-627 | ||
| 005 | 20240413193345.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 210506s2021 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.1016/j.cell.2021.01.008 |2 doi | |
| 035 | |a (DE-627)1757244735 | ||
| 035 | |a (DE-599)KXP1757244735 | ||
| 035 | |a (OCoLC)1341408335 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 33 |2 sdnb | ||
| 100 | 1 | |a Stenzinger, Albrecht |e VerfasserIn |0 (DE-588)139606106 |0 (DE-627)703395238 |0 (DE-576)312432755 |4 aut | |
| 245 | 1 | 0 | |a Strength in numbers |b predicting response to checkpoint inhibitors from large clinical datasets |c Albrecht Stenzinger, Daniel Kazdal, and Solange Peters |
| 264 | 1 | |c 27 January 2021 | |
| 300 | |a 3 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Gesehen am 06.05.2021 | ||
| 520 | |a The advent of immune checkpoint blockers for cancer therapy has spawned great interest in identifying molecular features reflecting the complexity of tumor immunity, which can subsequently be leveraged as predictive biomarkers. In a thorough big-data approach analyzing the largest series of homogenized molecular and clinical datasets, Litchfield et al. identified a set of genomic biomarkers that identifies immunotherapy responders across cancer types. | ||
| 700 | 1 | |a Kazdal, Daniel |d 1983- |e VerfasserIn |0 (DE-588)114929650X |0 (DE-627)1009614088 |0 (DE-576)496635867 |4 aut | |
| 700 | 1 | |a Peters, Solange |d 1972- |e VerfasserIn |0 (DE-588)113195274X |0 (DE-627)887311555 |0 (DE-576)488580404 |4 aut | |
| 773 | 0 | 8 | |i Enthalten in |t Cell |d [Cambridge, Mass.] : Cell Press, 1974 |g 184(2021), 3, Seite 571-573 |h Online-Ressource |w (DE-627)320416127 |w (DE-600)2001951-8 |w (DE-576)090881370 |x 1097-4172 |7 nnas |a Strength in numbers predicting response to checkpoint inhibitors from large clinical datasets |
| 773 | 1 | 8 | |g volume:184 |g year:2021 |g number:3 |g pages:571-573 |g extent:3 |a Strength in numbers predicting response to checkpoint inhibitors from large clinical datasets |
| 856 | 4 | 0 | |u https://doi.org/10.1016/j.cell.2021.01.008 |x Verlag |x Resolving-System |z lizenzpflichtig |3 Volltext |
| 856 | 4 | 0 | |u https://www.sciencedirect.com/science/article/pii/S0092867421000088 |x Verlag |z lizenzpflichtig |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20210506 | ||
| 993 | |a Article | ||
| 994 | |a 2021 | ||
| 998 | |g 114929650X |a Kazdal, Daniel |m 114929650X:Kazdal, Daniel |d 910000 |d 912000 |e 910000PK114929650X |e 912000PK114929650X |k 0/910000/ |k 1/910000/912000/ |p 2 | ||
| 998 | |g 139606106 |a Stenzinger, Albrecht |m 139606106:Stenzinger, Albrecht |d 910000 |d 912000 |e 910000PS139606106 |e 912000PS139606106 |k 0/910000/ |k 1/910000/912000/ |p 1 |x j | ||
| 999 | |a KXP-PPN1757244735 |e 3924130353 | ||
| BIB | |a Y | ||
| SER | |a journal | ||
| JSO | |a {"language":["eng"],"recId":"1757244735","type":{"media":"Online-Ressource","bibl":"article-journal"},"note":["Gesehen am 06.05.2021"],"person":[{"given":"Albrecht","family":"Stenzinger","role":"aut","roleDisplay":"VerfasserIn","display":"Stenzinger, Albrecht"},{"family":"Kazdal","given":"Daniel","roleDisplay":"VerfasserIn","display":"Kazdal, Daniel","role":"aut"},{"role":"aut","roleDisplay":"VerfasserIn","display":"Peters, Solange","given":"Solange","family":"Peters"}],"title":[{"title_sort":"Strength in numbers","subtitle":"predicting response to checkpoint inhibitors from large clinical datasets","title":"Strength in numbers"}],"relHost":[{"physDesc":[{"extent":"Online-Ressource"}],"id":{"issn":["1097-4172"],"eki":["320416127"],"zdb":["2001951-8"]},"origin":[{"publisher":"Cell Press ; Elsevier","dateIssuedKey":"1974","dateIssuedDisp":"1974-","publisherPlace":"[Cambridge, Mass.] ; New York, NY"}],"part":{"pages":"571-573","issue":"3","year":"2021","extent":"3","volume":"184","text":"184(2021), 3, Seite 571-573"},"pubHistory":["1.1974 -"],"language":["eng"],"recId":"320416127","disp":"Strength in numbers predicting response to checkpoint inhibitors from large clinical datasetsCell","note":["Gesehen am 11.03.24"],"type":{"media":"Online-Ressource","bibl":"periodical"},"title":[{"title":"Cell","title_sort":"Cell"}]}],"physDesc":[{"extent":"3 S."}],"name":{"displayForm":["Albrecht Stenzinger, Daniel Kazdal, and Solange Peters"]},"id":{"eki":["1757244735"],"doi":["10.1016/j.cell.2021.01.008"]},"origin":[{"dateIssuedDisp":"27 January 2021","dateIssuedKey":"2021"}]} | ||
| SRT | |a STENZINGERSTRENGTHIN2720 | ||