cola: an R/Bioconductor package for consensus partitioning through a general framework

Classification of high-throughput genomic data is a powerful method to assign samples to subgroups with specific molecular profiles. Consensus partitioning is the most widely applied approach to reveal subgroups by summarizing a consensus classification from a list of individual classifications gene...

Full description

Saved in:
Bibliographic Details
Main Authors: Gu, Zuguang (Author) , Schlesner, Matthias (Author) , Hübschmann, Daniel (Author)
Format: Article (Journal)
Language:English
Published: 2021
In: Nucleic acids research
Year: 2020, Volume: 49, Issue: 3, Pages: 1-16
ISSN:1362-4962
DOI:10.1093/nar/gkaa1146
Online Access:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1093/nar/gkaa1146
Get full text
Author Notes:Zuguang Gu, Matthias Schlesner and Daniel Hübschmann

MARC

LEADER 00000caa a2200000 c 4500
001 1757463569
003 DE-627
005 20220819200240.0
007 cr uuu---uuuuu
008 210507r20212020xx |||||o 00| ||eng c
024 7 |a 10.1093/nar/gkaa1146  |2 doi 
035 |a (DE-627)1757463569 
035 |a (DE-599)KXP1757463569 
035 |a (OCoLC)1341408418 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 33  |2 sdnb 
100 1 |a Gu, Zuguang  |e VerfasserIn  |0 (DE-588)1159941629  |0 (DE-627)1023025779  |0 (DE-576)505410818  |4 aut 
245 1 0 |a cola  |b an R/Bioconductor package for consensus partitioning through a general framework  |c Zuguang Gu, Matthias Schlesner and Daniel Hübschmann 
264 1 |c 2021 
300 |a 16 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Published online 4 December 2020 
500 |a Gesehen am 29.06.2021 
520 |a Classification of high-throughput genomic data is a powerful method to assign samples to subgroups with specific molecular profiles. Consensus partitioning is the most widely applied approach to reveal subgroups by summarizing a consensus classification from a list of individual classifications generated by repeatedly executing clustering on random subsets of the data. It is able to evaluate the stability of the classification. We implemented a new R/Bioconductor package, cola, that provides a general framework for consensus partitioning. With cola, various parameters and methods can be user-defined and easily integrated into different steps of an analysis, e.g., feature selection, sample classification or defining signatures. cola provides a new method named ATC (ability to correlate to other rows) to extract features and recommends spherical k-means clustering (skmeans) for subgroup classification. We show that ATC and skmeans have better performance than other commonly used methods by a comprehensive benchmark on public datasets. We also benchmark key parameters in the consensus partitioning procedure, which helps users to select optimal parameter values. Moreover, cola provides rich functionalities to apply multiple partitioning methods in parallel and directly compare their results, as well as rich visualizations. cola can automate the complete analysis and generates a comprehensive HTML report. 
534 |c 2020 
700 1 |a Schlesner, Matthias  |d 1978-  |e VerfasserIn  |0 (DE-588)138455201  |0 (DE-627)602593867  |0 (DE-576)307654656  |4 aut 
700 1 |a Hübschmann, Daniel  |d 1981-  |e VerfasserIn  |0 (DE-588)1099133653  |0 (DE-627)858143798  |0 (DE-576)469237082  |4 aut 
773 0 8 |i Enthalten in  |t Nucleic acids research  |d Oxford : Oxford Univ. Press, 1974  |g 49(2021), 3, Artikel-ID e15, Seite 1-16  |h Online-Ressource  |w (DE-627)26813250X  |w (DE-600)1472175-2  |w (DE-576)07760878X  |x 1362-4962  |7 nnas  |a cola an R/Bioconductor package for consensus partitioning through a general framework 
773 1 8 |g volume:49  |g year:2021  |g number:3  |g elocationid:e15  |g pages:1-16  |g extent:16  |a cola an R/Bioconductor package for consensus partitioning through a general framework 
856 4 0 |u https://doi.org/10.1093/nar/gkaa1146  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20210507 
993 |a Article 
994 |a 2021 
998 |g 1099133653  |a Hübschmann, Daniel  |m 1099133653:Hübschmann, Daniel  |d 50000  |e 50000PH1099133653  |k 0/50000/  |p 3  |y j 
998 |g 138455201  |a Schlesner, Matthias  |m 138455201:Schlesner, Matthias  |d 140000  |e 140000PS138455201  |k 0/140000/  |p 2 
999 |a KXP-PPN1757463569  |e 3924782490 
BIB |a Y 
SER |a journal 
JSO |a {"title":[{"title":"cola","subtitle":"an R/Bioconductor package for consensus partitioning through a general framework","title_sort":"cola"}],"language":["eng"],"id":{"doi":["10.1093/nar/gkaa1146"],"eki":["1757463569"]},"physDesc":[{"extent":"16 S."}],"note":["Published online 4 December 2020","Gesehen am 29.06.2021"],"relHost":[{"part":{"issue":"3","pages":"1-16","extent":"16","volume":"49","year":"2021","text":"49(2021), 3, Artikel-ID e15, Seite 1-16"},"language":["eng"],"title":[{"title_sort":"Nucleic acids research","title":"Nucleic acids research"}],"pubHistory":["1.1974 -"],"recId":"26813250X","origin":[{"dateIssuedKey":"1974","publisher":"Oxford Univ. Press","dateIssuedDisp":"1974-","publisherPlace":"Oxford"}],"titleAlt":[{"title":"NAR online"},{"title":"NAR"},{"title":"Database issue"},{"title":"Web server issue"}],"type":{"media":"Online-Ressource","bibl":"periodical"},"note":["Gesehen am 15.09.2025","Ungezählte Beil.: Database issue; Web server issue"],"physDesc":[{"extent":"Online-Ressource"}],"disp":"cola an R/Bioconductor package for consensus partitioning through a general frameworkNucleic acids research","id":{"issn":["1362-4962"],"zdb":["1472175-2"],"eki":["26813250X"]}}],"origin":[{"dateIssuedDisp":"2021","dateIssuedKey":"2021"}],"recId":"1757463569","type":{"media":"Online-Ressource","bibl":"article-journal"},"person":[{"family":"Gu","display":"Gu, Zuguang","role":"aut","given":"Zuguang"},{"family":"Schlesner","given":"Matthias","role":"aut","display":"Schlesner, Matthias"},{"display":"Hübschmann, Daniel","role":"aut","given":"Daniel","family":"Hübschmann"}],"name":{"displayForm":["Zuguang Gu, Matthias Schlesner and Daniel Hübschmann"]}} 
SRT |a GUZUGUANGSCOLA2021