On some partial data Calderón type problems with mixed boundary conditions

In this article we consider the simultaneous recovery of bulk and boundary potentials in (degenerate) elliptic equations modelling (degenerate) conducting media with inaccessible boundaries. This connects local and nonlocal Calder\'on type problems. We prove two main results on these type of pr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Covi, Giovanni (VerfasserIn) , Rüland, Angkana (VerfasserIn)
Dokumenttyp: Article (Journal) Kapitel/Artikel
Sprache:Englisch
Veröffentlicht: 5 Jun 2020
In: Arxiv
Year: 2020, Pages: 1-51
Online-Zugang:Verlag, lizenzpflichtig, Volltext: http://arxiv.org/abs/2006.03252
Volltext
Verfasserangaben:Giovanni Covi and Angkana Rüland
Beschreibung
Zusammenfassung:In this article we consider the simultaneous recovery of bulk and boundary potentials in (degenerate) elliptic equations modelling (degenerate) conducting media with inaccessible boundaries. This connects local and nonlocal Calder\'on type problems. We prove two main results on these type of problems: On the one hand, we derive simultaneous bulk and boundary Runge approximation results. Building on these, we deduce uniqueness for localized bulk and boundary potentials. On the other hand, we construct a family of CGO solutions associated with the corresponding equations. These allow us to deduce uniqueness results for arbitrary bounded, not necessarily localized bulk and boundary potentials. The CGO solutions are constructed by duality to a new Carleman estimate.
Beschreibung:Gesehen am 12.05.2021
Beschreibung:Online Resource