On Runge approximation and Lipschitz stability for a finite-dimensional Schrödinger inverse problem

In this note we reprove the Lipschitz stability for the inverse problem for the Schr\"odinger operator with finite-dimensional potentials by using quantitative Runge approximation results. This provides a quantification of the Schr\"odinger version of the argument from Kohn and Vogelius in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Rüland, Angkana (VerfasserIn) , Sincich, Eva (VerfasserIn)
Dokumenttyp: Article (Journal) Kapitel/Artikel
Sprache:Englisch
Veröffentlicht: 21 Feb 2020
In: Arxiv
Year: 2020, Pages: 1-12
Online-Zugang:Verlag, lizenzpflichtig, Volltext: http://arxiv.org/abs/2002.09319
Volltext
Verfasserangaben:Angkana Rüland and Eva Sincich
Beschreibung
Zusammenfassung:In this note we reprove the Lipschitz stability for the inverse problem for the Schr\"odinger operator with finite-dimensional potentials by using quantitative Runge approximation results. This provides a quantification of the Schr\"odinger version of the argument from Kohn and Vogelius in Comm. Pure Appl. Math. (1985) and presents a slight variant of the strategy considered by Alessandrini, de Hoop, Gaburro and Sincich in Asymptotic Analysis (2018) which may prove useful also in the context of more general operators.
Beschreibung:Gesehen am 12.05.2021
Beschreibung:Online Resource