On Runge approximation and Lipschitz stability for a finite-dimensional Schrödinger inverse problem
In this note we reprove the Lipschitz stability for the inverse problem for the Schr\"odinger operator with finite-dimensional potentials by using quantitative Runge approximation results. This provides a quantification of the Schr\"odinger version of the argument from Kohn and Vogelius in...
Gespeichert in:
| Hauptverfasser: | , |
|---|---|
| Dokumenttyp: | Article (Journal) Kapitel/Artikel |
| Sprache: | Englisch |
| Veröffentlicht: |
21 Feb 2020
|
| In: |
Arxiv
Year: 2020, Pages: 1-12 |
| Online-Zugang: | Verlag, lizenzpflichtig, Volltext: http://arxiv.org/abs/2002.09319 |
| Verfasserangaben: | Angkana Rüland and Eva Sincich |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1757754342 | ||
| 003 | DE-627 | ||
| 005 | 20220819204312.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 210512s2020 xx |||||o 00| ||eng c | ||
| 035 | |a (DE-627)1757754342 | ||
| 035 | |a (DE-599)KXP1757754342 | ||
| 035 | |a (OCoLC)1341413049 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 27 |2 sdnb | ||
| 100 | 1 | |a Rüland, Angkana |d 1987- |e VerfasserIn |0 (DE-588)1051987679 |0 (DE-627)787342378 |0 (DE-576)407655506 |4 aut | |
| 245 | 1 | 0 | |a On Runge approximation and Lipschitz stability for a finite-dimensional Schrödinger inverse problem |c Angkana Rüland and Eva Sincich |
| 264 | 1 | |c 21 Feb 2020 | |
| 300 | |a 12 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Gesehen am 12.05.2021 | ||
| 520 | |a In this note we reprove the Lipschitz stability for the inverse problem for the Schr\"odinger operator with finite-dimensional potentials by using quantitative Runge approximation results. This provides a quantification of the Schr\"odinger version of the argument from Kohn and Vogelius in Comm. Pure Appl. Math. (1985) and presents a slight variant of the strategy considered by Alessandrini, de Hoop, Gaburro and Sincich in Asymptotic Analysis (2018) which may prove useful also in the context of more general operators. | ||
| 650 | 4 | |a Mathematics - Analysis of PDEs | |
| 700 | 1 | |a Sincich, Eva |d 1976- |e VerfasserIn |0 (DE-588)1233398334 |0 (DE-627)1757754490 |4 aut | |
| 773 | 0 | 8 | |i Enthalten in |t Arxiv |d Ithaca, NY : Cornell University, 1991 |g (2020), Artikel-ID 2002.09319, Seite 1-12 |h Online-Ressource |w (DE-627)509006531 |w (DE-600)2225896-6 |w (DE-576)28130436X |7 nnas |a On Runge approximation and Lipschitz stability for a finite-dimensional Schrödinger inverse problem |
| 773 | 1 | 8 | |g year:2020 |g elocationid:2002.09319 |g pages:1-12 |g extent:12 |a On Runge approximation and Lipschitz stability for a finite-dimensional Schrödinger inverse problem |
| 856 | 4 | 0 | |u http://arxiv.org/abs/2002.09319 |x Verlag |z lizenzpflichtig |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20210512 | ||
| 993 | |a Article | ||
| 994 | |a 2020 | ||
| 998 | |g 1051987679 |a Rüland, Angkana |m 1051987679:Rüland, Angkana |p 1 |x j | ||
| 999 | |a KXP-PPN1757754342 |e 3927729582 | ||
| BIB | |a Y | ||
| JSO | |a {"person":[{"given":"Angkana","family":"Rüland","role":"aut","display":"Rüland, Angkana","roleDisplay":"VerfasserIn"},{"roleDisplay":"VerfasserIn","display":"Sincich, Eva","role":"aut","family":"Sincich","given":"Eva"}],"title":[{"title":"On Runge approximation and Lipschitz stability for a finite-dimensional Schrödinger inverse problem","title_sort":"On Runge approximation and Lipschitz stability for a finite-dimensional Schrödinger inverse problem"}],"note":["Gesehen am 12.05.2021"],"type":{"bibl":"chapter","media":"Online-Ressource"},"language":["eng"],"recId":"1757754342","name":{"displayForm":["Angkana Rüland and Eva Sincich"]},"origin":[{"dateIssuedDisp":"21 Feb 2020","dateIssuedKey":"2020"}],"id":{"eki":["1757754342"]},"physDesc":[{"extent":"12 S."}],"relHost":[{"origin":[{"publisherPlace":"Ithaca, NY ; [Erscheinungsort nicht ermittelbar]","dateIssuedDisp":"1991-","publisher":"Cornell University ; Arxiv.org","dateIssuedKey":"1991"}],"id":{"eki":["509006531"],"zdb":["2225896-6"]},"physDesc":[{"extent":"Online-Ressource"}],"title":[{"title":"Arxiv","title_sort":"Arxiv"}],"pubHistory":["1991 -"],"titleAlt":[{"title":"Arxiv.org"},{"title":"Arxiv.org e-print archive"},{"title":"Arxiv e-print archive"},{"title":"De.arxiv.org"}],"part":{"pages":"1-12","year":"2020","extent":"12","text":"(2020), Artikel-ID 2002.09319, Seite 1-12"},"disp":"On Runge approximation and Lipschitz stability for a finite-dimensional Schrödinger inverse problemArxiv","type":{"media":"Online-Ressource","bibl":"edited-book"},"note":["Gesehen am 28.05.2024"],"recId":"509006531","language":["eng"]}]} | ||
| SRT | |a RUELANDANGONRUNGEAPP2120 | ||