Convex integration solutions for the geometrically non-linear two-well problem with higher Sobolev regularity

In this article we discuss higher Sobolev regularity of convex integration solutions for the geometrically non-linear two-well problem. More precisely, we construct solutions to the differential inclusion $\nabla u\in K$ subject to suitable affine boundary conditions for $ u$ with $$ K:= SO(2)\left[...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Della Porta, Francesco (VerfasserIn) , Rüland, Angkana (VerfasserIn)
Dokumenttyp: Article (Journal) Kapitel/Artikel
Sprache:Englisch
Veröffentlicht: 29 May 2019
In: Arxiv
Year: 2019, Pages: 1-33
Online-Zugang:Verlag, lizenzpflichtig, Volltext: http://arxiv.org/abs/1905.12521
Volltext
Verfasserangaben:Francesco Della Porta and Angkana Rüland

MARC

LEADER 00000caa a2200000 c 4500
001 1757754911
003 DE-627
005 20220819204327.0
007 cr uuu---uuuuu
008 210512s2019 xx |||||o 00| ||eng c
035 |a (DE-627)1757754911 
035 |a (DE-599)KXP1757754911 
035 |a (OCoLC)1341413050 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 27  |2 sdnb 
100 1 |a Della Porta, Francesco  |e VerfasserIn  |0 (DE-588)1233399160  |0 (DE-627)1757756337  |4 aut 
245 1 0 |a Convex integration solutions for the geometrically non-linear two-well problem with higher Sobolev regularity  |c Francesco Della Porta and Angkana Rüland 
264 1 |c 29 May 2019 
300 |a 33 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 12.05.2021 
520 |a In this article we discuss higher Sobolev regularity of convex integration solutions for the geometrically non-linear two-well problem. More precisely, we construct solutions to the differential inclusion $\nabla u\in K$ subject to suitable affine boundary conditions for $ u$ with $$ K:= SO(2)\left[\begin{array}{ ccc } 1 & \delta \\ 0 & 1 \end{array}\right] \cup SO(2)\left[\begin{array}{ ccc } 1 & -\delta \\ 0 & 1 \end{array}\right] $$ such that the associated deformation gradients $\nabla u$ enjoy higher Sobolev regularity. This provides the first result in the modelling of phase transformations in shape-memory alloys where $K^{qc} \neq K^{c}$, and where the energy minimisers constructed by convex integration satisfy higher Sobolev regularity. We show that in spite of additional difficulties arising from the treatment of the non-linear matrix space geometry, it is possible to deal with the geometrically non-linear two-well problem within the framework outlined in \cite{RZZ18}. Physically, our investigation of convex integration solutions at higher Sobolev regularity is motivated by viewing regularity as a possible selection mechanism of microstructures. 
650 4 |a Mathematics - Analysis of PDEs 
700 1 |a Rüland, Angkana  |d 1987-  |e VerfasserIn  |0 (DE-588)1051987679  |0 (DE-627)787342378  |0 (DE-576)407655506  |4 aut 
773 0 8 |i Enthalten in  |t Arxiv  |d Ithaca, NY : Cornell University, 1991  |g (2019), Artikel-ID 1905.12521, Seite 1-33  |h Online-Ressource  |w (DE-627)509006531  |w (DE-600)2225896-6  |w (DE-576)28130436X  |7 nnas  |a Convex integration solutions for the geometrically non-linear two-well problem with higher Sobolev regularity 
773 1 8 |g year:2019  |g elocationid:1905.12521  |g pages:1-33  |g extent:33  |a Convex integration solutions for the geometrically non-linear two-well problem with higher Sobolev regularity 
856 4 0 |u http://arxiv.org/abs/1905.12521  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20210512 
993 |a Article 
994 |a 2019 
998 |g 1051987679  |a Rüland, Angkana  |m 1051987679:Rüland, Angkana  |p 2  |y j 
999 |a KXP-PPN1757754911  |e 3927730874 
BIB |a Y 
JSO |a {"title":[{"title":"Convex integration solutions for the geometrically non-linear two-well problem with higher Sobolev regularity","title_sort":"Convex integration solutions for the geometrically non-linear two-well problem with higher Sobolev regularity"}],"person":[{"family":"Della Porta","given":"Francesco","roleDisplay":"VerfasserIn","display":"Della Porta, Francesco","role":"aut"},{"role":"aut","roleDisplay":"VerfasserIn","display":"Rüland, Angkana","given":"Angkana","family":"Rüland"}],"recId":"1757754911","language":["eng"],"note":["Gesehen am 12.05.2021"],"type":{"bibl":"chapter","media":"Online-Ressource"},"id":{"eki":["1757754911"]},"origin":[{"dateIssuedKey":"2019","dateIssuedDisp":"29 May 2019"}],"name":{"displayForm":["Francesco Della Porta and Angkana Rüland"]},"relHost":[{"origin":[{"dateIssuedDisp":"1991-","dateIssuedKey":"1991","publisher":"Cornell University ; Arxiv.org","publisherPlace":"Ithaca, NY ; [Erscheinungsort nicht ermittelbar]"}],"id":{"eki":["509006531"],"zdb":["2225896-6"]},"physDesc":[{"extent":"Online-Ressource"}],"title":[{"title_sort":"Arxiv","title":"Arxiv"}],"pubHistory":["1991 -"],"part":{"text":"(2019), Artikel-ID 1905.12521, Seite 1-33","extent":"33","year":"2019","pages":"1-33"},"titleAlt":[{"title":"Arxiv.org"},{"title":"Arxiv.org e-print archive"},{"title":"Arxiv e-print archive"},{"title":"De.arxiv.org"}],"note":["Gesehen am 28.05.2024"],"disp":"Convex integration solutions for the geometrically non-linear two-well problem with higher Sobolev regularityArxiv","type":{"media":"Online-Ressource","bibl":"edited-book"},"recId":"509006531","language":["eng"]}],"physDesc":[{"extent":"33 S."}]} 
SRT |a DELLAPORTACONVEXINTE2920