Convex integration solutions for the geometrically non-linear two-well problem with higher Sobolev regularity
In this article we discuss higher Sobolev regularity of convex integration solutions for the geometrically non-linear two-well problem. More precisely, we construct solutions to the differential inclusion $\nabla u\in K$ subject to suitable affine boundary conditions for $ u$ with $$ K:= SO(2)\left[...
Gespeichert in:
| Hauptverfasser: | , |
|---|---|
| Dokumenttyp: | Article (Journal) Kapitel/Artikel |
| Sprache: | Englisch |
| Veröffentlicht: |
29 May 2019
|
| In: |
Arxiv
Year: 2019, Pages: 1-33 |
| Online-Zugang: | Verlag, lizenzpflichtig, Volltext: http://arxiv.org/abs/1905.12521 |
| Verfasserangaben: | Francesco Della Porta and Angkana Rüland |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1757754911 | ||
| 003 | DE-627 | ||
| 005 | 20220819204327.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 210512s2019 xx |||||o 00| ||eng c | ||
| 035 | |a (DE-627)1757754911 | ||
| 035 | |a (DE-599)KXP1757754911 | ||
| 035 | |a (OCoLC)1341413050 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 27 |2 sdnb | ||
| 100 | 1 | |a Della Porta, Francesco |e VerfasserIn |0 (DE-588)1233399160 |0 (DE-627)1757756337 |4 aut | |
| 245 | 1 | 0 | |a Convex integration solutions for the geometrically non-linear two-well problem with higher Sobolev regularity |c Francesco Della Porta and Angkana Rüland |
| 264 | 1 | |c 29 May 2019 | |
| 300 | |a 33 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Gesehen am 12.05.2021 | ||
| 520 | |a In this article we discuss higher Sobolev regularity of convex integration solutions for the geometrically non-linear two-well problem. More precisely, we construct solutions to the differential inclusion $\nabla u\in K$ subject to suitable affine boundary conditions for $ u$ with $$ K:= SO(2)\left[\begin{array}{ ccc } 1 & \delta \\ 0 & 1 \end{array}\right] \cup SO(2)\left[\begin{array}{ ccc } 1 & -\delta \\ 0 & 1 \end{array}\right] $$ such that the associated deformation gradients $\nabla u$ enjoy higher Sobolev regularity. This provides the first result in the modelling of phase transformations in shape-memory alloys where $K^{qc} \neq K^{c}$, and where the energy minimisers constructed by convex integration satisfy higher Sobolev regularity. We show that in spite of additional difficulties arising from the treatment of the non-linear matrix space geometry, it is possible to deal with the geometrically non-linear two-well problem within the framework outlined in \cite{RZZ18}. Physically, our investigation of convex integration solutions at higher Sobolev regularity is motivated by viewing regularity as a possible selection mechanism of microstructures. | ||
| 650 | 4 | |a Mathematics - Analysis of PDEs | |
| 700 | 1 | |a Rüland, Angkana |d 1987- |e VerfasserIn |0 (DE-588)1051987679 |0 (DE-627)787342378 |0 (DE-576)407655506 |4 aut | |
| 773 | 0 | 8 | |i Enthalten in |t Arxiv |d Ithaca, NY : Cornell University, 1991 |g (2019), Artikel-ID 1905.12521, Seite 1-33 |h Online-Ressource |w (DE-627)509006531 |w (DE-600)2225896-6 |w (DE-576)28130436X |7 nnas |a Convex integration solutions for the geometrically non-linear two-well problem with higher Sobolev regularity |
| 773 | 1 | 8 | |g year:2019 |g elocationid:1905.12521 |g pages:1-33 |g extent:33 |a Convex integration solutions for the geometrically non-linear two-well problem with higher Sobolev regularity |
| 856 | 4 | 0 | |u http://arxiv.org/abs/1905.12521 |x Verlag |z lizenzpflichtig |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20210512 | ||
| 993 | |a Article | ||
| 994 | |a 2019 | ||
| 998 | |g 1051987679 |a Rüland, Angkana |m 1051987679:Rüland, Angkana |p 2 |y j | ||
| 999 | |a KXP-PPN1757754911 |e 3927730874 | ||
| BIB | |a Y | ||
| JSO | |a {"title":[{"title":"Convex integration solutions for the geometrically non-linear two-well problem with higher Sobolev regularity","title_sort":"Convex integration solutions for the geometrically non-linear two-well problem with higher Sobolev regularity"}],"person":[{"family":"Della Porta","given":"Francesco","roleDisplay":"VerfasserIn","display":"Della Porta, Francesco","role":"aut"},{"role":"aut","roleDisplay":"VerfasserIn","display":"Rüland, Angkana","given":"Angkana","family":"Rüland"}],"recId":"1757754911","language":["eng"],"note":["Gesehen am 12.05.2021"],"type":{"bibl":"chapter","media":"Online-Ressource"},"id":{"eki":["1757754911"]},"origin":[{"dateIssuedKey":"2019","dateIssuedDisp":"29 May 2019"}],"name":{"displayForm":["Francesco Della Porta and Angkana Rüland"]},"relHost":[{"origin":[{"dateIssuedDisp":"1991-","dateIssuedKey":"1991","publisher":"Cornell University ; Arxiv.org","publisherPlace":"Ithaca, NY ; [Erscheinungsort nicht ermittelbar]"}],"id":{"eki":["509006531"],"zdb":["2225896-6"]},"physDesc":[{"extent":"Online-Ressource"}],"title":[{"title_sort":"Arxiv","title":"Arxiv"}],"pubHistory":["1991 -"],"part":{"text":"(2019), Artikel-ID 1905.12521, Seite 1-33","extent":"33","year":"2019","pages":"1-33"},"titleAlt":[{"title":"Arxiv.org"},{"title":"Arxiv.org e-print archive"},{"title":"Arxiv e-print archive"},{"title":"De.arxiv.org"}],"note":["Gesehen am 28.05.2024"],"disp":"Convex integration solutions for the geometrically non-linear two-well problem with higher Sobolev regularityArxiv","type":{"media":"Online-Ressource","bibl":"edited-book"},"recId":"509006531","language":["eng"]}],"physDesc":[{"extent":"33 S."}]} | ||
| SRT | |a DELLAPORTACONVEXINTE2920 | ||