The Calderón problem for a space-time fractional parabolic equation
In this article we study an inverse problem for the space-time fractional parabolic operator $(\partial_t-\Delta)^s+Q$ with $0<s<1$ in any space dimension. We uniquely determine the unknown bounded potential $Q$ from infinitely many exterior Dirichlet-to-Neumann type measurements. This relies...
Gespeichert in:
| Hauptverfasser: | , , |
|---|---|
| Dokumenttyp: | Article (Journal) Kapitel/Artikel |
| Sprache: | Englisch |
| Veröffentlicht: |
21 May 2019
|
| In: |
Arxiv
Year: 2019, Pages: 1-34 |
| Online-Zugang: | Verlag, lizenzpflichtig, Volltext: http://arxiv.org/abs/1905.08719 |
| Verfasserangaben: | Ru-Yu Lai, Yi-Hsuan Lin, and Angkana Rüland |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1757756442 | ||
| 003 | DE-627 | ||
| 005 | 20220819204340.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 210512s2019 xx |||||o 00| ||eng c | ||
| 035 | |a (DE-627)1757756442 | ||
| 035 | |a (DE-599)KXP1757756442 | ||
| 035 | |a (OCoLC)1341409055 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 27 |2 sdnb | ||
| 100 | 1 | |a Lai, Ru-Yu |e VerfasserIn |0 (DE-588)1216660417 |0 (DE-627)1727910753 |4 aut | |
| 245 | 1 | 4 | |a The Calderón problem for a space-time fractional parabolic equation |c Ru-Yu Lai, Yi-Hsuan Lin, and Angkana Rüland |
| 264 | 1 | |c 21 May 2019 | |
| 300 | |a 34 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Gesehen am 12.05.2021 | ||
| 520 | |a In this article we study an inverse problem for the space-time fractional parabolic operator $(\partial_t-\Delta)^s+Q$ with $0<s<1$ in any space dimension. We uniquely determine the unknown bounded potential $Q$ from infinitely many exterior Dirichlet-to-Neumann type measurements. This relies on Runge approximation and the dual global weak unique continuation properties of the equation under consideration. In discussing weak unique continuation of our operator, a main feature of our argument relies on a Carleman estimate for the associated fractional parabolic Caffarelli-Silvestre extension. Furthermore, we also discuss constructive single measurement results based on the approximation and unique continuation properties of the equation. | ||
| 650 | 4 | |a Mathematics - Analysis of PDEs | |
| 700 | 1 | |a Lin, Yi-Hsuan |e VerfasserIn |0 (DE-588)121666059X |0 (DE-627)1727911415 |4 aut | |
| 700 | 1 | |a Rüland, Angkana |d 1987- |e VerfasserIn |0 (DE-588)1051987679 |0 (DE-627)787342378 |0 (DE-576)407655506 |4 aut | |
| 773 | 0 | 8 | |i Enthalten in |t Arxiv |d Ithaca, NY : Cornell University, 1991 |g (2019), Artikel-ID 1905.08719, Seite 1-34 |h Online-Ressource |w (DE-627)509006531 |w (DE-600)2225896-6 |w (DE-576)28130436X |7 nnas |a The Calderón problem for a space-time fractional parabolic equation |
| 773 | 1 | 8 | |g year:2019 |g elocationid:1905.08719 |g pages:1-34 |g extent:34 |a The Calderón problem for a space-time fractional parabolic equation |
| 856 | 4 | 0 | |u http://arxiv.org/abs/1905.08719 |x Verlag |z lizenzpflichtig |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20210512 | ||
| 993 | |a Article | ||
| 994 | |a 2019 | ||
| 998 | |g 1051987679 |a Rüland, Angkana |m 1051987679:Rüland, Angkana |p 3 |y j | ||
| 999 | |a KXP-PPN1757756442 |e 3927735507 | ||
| BIB | |a Y | ||
| JSO | |a {"physDesc":[{"extent":"34 S."}],"relHost":[{"titleAlt":[{"title":"Arxiv.org"},{"title":"Arxiv.org e-print archive"},{"title":"Arxiv e-print archive"},{"title":"De.arxiv.org"}],"part":{"text":"(2019), Artikel-ID 1905.08719, Seite 1-34","extent":"34","year":"2019","pages":"1-34"},"pubHistory":["1991 -"],"language":["eng"],"recId":"509006531","disp":"The Calderón problem for a space-time fractional parabolic equationArxiv","note":["Gesehen am 28.05.2024"],"type":{"media":"Online-Ressource","bibl":"edited-book"},"title":[{"title_sort":"Arxiv","title":"Arxiv"}],"physDesc":[{"extent":"Online-Ressource"}],"id":{"zdb":["2225896-6"],"eki":["509006531"]},"origin":[{"publisherPlace":"Ithaca, NY ; [Erscheinungsort nicht ermittelbar]","dateIssuedKey":"1991","publisher":"Cornell University ; Arxiv.org","dateIssuedDisp":"1991-"}]}],"name":{"displayForm":["Ru-Yu Lai, Yi-Hsuan Lin, and Angkana Rüland"]},"origin":[{"dateIssuedDisp":"21 May 2019","dateIssuedKey":"2019"}],"id":{"eki":["1757756442"]},"type":{"media":"Online-Ressource","bibl":"chapter"},"note":["Gesehen am 12.05.2021"],"recId":"1757756442","language":["eng"],"person":[{"role":"aut","roleDisplay":"VerfasserIn","display":"Lai, Ru-Yu","given":"Ru-Yu","family":"Lai"},{"roleDisplay":"VerfasserIn","display":"Lin, Yi-Hsuan","role":"aut","family":"Lin","given":"Yi-Hsuan"},{"given":"Angkana","family":"Rüland","role":"aut","roleDisplay":"VerfasserIn","display":"Rüland, Angkana"}],"title":[{"title":"The Calderón problem for a space-time fractional parabolic equation","title_sort":"Calderón problem for a space-time fractional parabolic equation"}]} | ||
| SRT | |a LAIRUYULINCALDERONPR2120 | ||