Strong unique continuation for the higher order fractional Laplacian

In this article we study the strong unique continuation property for solutions of higher order (variable coefficient) fractional Schr\"odinger operators. We deduce the strong unique continuation property in the presence of subcritical and critical Hardy type potentials. In the same setting, we...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: García-Ferrero, María Ángeles (VerfasserIn) , Rüland, Angkana (VerfasserIn)
Dokumenttyp: Article (Journal) Kapitel/Artikel
Sprache:Englisch
Veröffentlicht: 26 Feb 2019
In: Arxiv
Year: 2019, Pages: 1-50
Online-Zugang:Verlag, lizenzpflichtig, Volltext: http://arxiv.org/abs/1902.09851
Volltext
Verfasserangaben:María-Ángeles García-Ferrero and Angkana Rüland

MARC

LEADER 00000caa a2200000 c 4500
001 175775699X
003 DE-627
005 20220819204401.0
007 cr uuu---uuuuu
008 210512s2019 xx |||||o 00| ||eng c
035 |a (DE-627)175775699X 
035 |a (DE-599)KXP175775699X 
035 |a (OCoLC)1341413030 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 27  |2 sdnb 
100 1 |a García-Ferrero, María Ángeles  |d 1991-  |e VerfasserIn  |0 (DE-588)1233397990  |0 (DE-627)1757753737  |4 aut 
245 1 0 |a Strong unique continuation for the higher order fractional Laplacian  |c María-Ángeles García-Ferrero and Angkana Rüland 
264 1 |c 26 Feb 2019 
300 |a 50 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 12.05.2021 
520 |a In this article we study the strong unique continuation property for solutions of higher order (variable coefficient) fractional Schr\"odinger operators. We deduce the strong unique continuation property in the presence of subcritical and critical Hardy type potentials. In the same setting, we address the unique continuation property from measurable sets of positive Lebesgue measure. As applications we prove the antilocality of the higher order fractional Laplacian and Runge type approximation theorems which have recently been exploited in the context of nonlocal Calder\'on type problems. As our main tools, we rely on the characterisation of the higher order fractional Laplacian through a generalised Caffarelli-Silvestre type extension problem and on adapted, iterated Carleman estimates. 
650 4 |a Mathematics - Analysis of PDEs 
700 1 |a Rüland, Angkana  |d 1987-  |e VerfasserIn  |0 (DE-588)1051987679  |0 (DE-627)787342378  |0 (DE-576)407655506  |4 aut 
773 0 8 |i Enthalten in  |t Arxiv  |d Ithaca, NY : Cornell University, 1991  |g (2019), Artikel-ID 1902.09851, Seite 1-50  |h Online-Ressource  |w (DE-627)509006531  |w (DE-600)2225896-6  |w (DE-576)28130436X  |7 nnas  |a Strong unique continuation for the higher order fractional Laplacian 
773 1 8 |g year:2019  |g elocationid:1902.09851  |g pages:1-50  |g extent:50  |a Strong unique continuation for the higher order fractional Laplacian 
856 4 0 |u http://arxiv.org/abs/1902.09851  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20210512 
993 |a Article 
998 |g 1051987679  |a Rüland, Angkana  |m 1051987679:Rüland, Angkana  |p 2  |y j 
998 |g 1233397990  |a García-Ferrero, María Ángeles  |m 1233397990:García-Ferrero, María Ángeles  |p 1  |x j 
999 |a KXP-PPN175775699X  |e 3927736716 
BIB |a Y 
JSO |a {"relHost":[{"title":[{"title":"Arxiv","title_sort":"Arxiv"}],"titleAlt":[{"title":"Arxiv.org"},{"title":"Arxiv.org e-print archive"},{"title":"Arxiv e-print archive"},{"title":"De.arxiv.org"}],"part":{"year":"2019","pages":"1-50","text":"(2019), Artikel-ID 1902.09851, Seite 1-50","extent":"50"},"pubHistory":["1991 -"],"language":["eng"],"recId":"509006531","note":["Gesehen am 28.05.2024"],"disp":"Strong unique continuation for the higher order fractional LaplacianArxiv","type":{"bibl":"edited-book","media":"Online-Ressource"},"id":{"eki":["509006531"],"zdb":["2225896-6"]},"origin":[{"publisher":"Cornell University ; Arxiv.org","dateIssuedKey":"1991","dateIssuedDisp":"1991-","publisherPlace":"Ithaca, NY ; [Erscheinungsort nicht ermittelbar]"}],"physDesc":[{"extent":"Online-Ressource"}]}],"physDesc":[{"extent":"50 S."}],"name":{"displayForm":["María-Ángeles García-Ferrero and Angkana Rüland"]},"id":{"eki":["175775699X"]},"origin":[{"dateIssuedDisp":"26 Feb 2019","dateIssuedKey":"2019"}],"recId":"175775699X","language":["eng"],"note":["Gesehen am 12.05.2021"],"type":{"media":"Online-Ressource","bibl":"chapter"},"person":[{"family":"García-Ferrero","given":"María Ángeles","roleDisplay":"VerfasserIn","display":"García-Ferrero, María Ángeles","role":"aut"},{"given":"Angkana","family":"Rüland","role":"aut","display":"Rüland, Angkana","roleDisplay":"VerfasserIn"}],"title":[{"title_sort":"Strong unique continuation for the higher order fractional Laplacian","title":"Strong unique continuation for the higher order fractional Laplacian"}]} 
SRT |a GARCIAFERRSTRONGUNIQ2620