Strong unique continuation for the higher order fractional Laplacian
In this article we study the strong unique continuation property for solutions of higher order (variable coefficient) fractional Schr\"odinger operators. We deduce the strong unique continuation property in the presence of subcritical and critical Hardy type potentials. In the same setting, we...
Gespeichert in:
| Hauptverfasser: | , |
|---|---|
| Dokumenttyp: | Article (Journal) Kapitel/Artikel |
| Sprache: | Englisch |
| Veröffentlicht: |
26 Feb 2019
|
| In: |
Arxiv
Year: 2019, Pages: 1-50 |
| Online-Zugang: | Verlag, lizenzpflichtig, Volltext: http://arxiv.org/abs/1902.09851 |
| Verfasserangaben: | María-Ángeles García-Ferrero and Angkana Rüland |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 175775699X | ||
| 003 | DE-627 | ||
| 005 | 20220819204401.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 210512s2019 xx |||||o 00| ||eng c | ||
| 035 | |a (DE-627)175775699X | ||
| 035 | |a (DE-599)KXP175775699X | ||
| 035 | |a (OCoLC)1341413030 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 27 |2 sdnb | ||
| 100 | 1 | |a García-Ferrero, María Ángeles |d 1991- |e VerfasserIn |0 (DE-588)1233397990 |0 (DE-627)1757753737 |4 aut | |
| 245 | 1 | 0 | |a Strong unique continuation for the higher order fractional Laplacian |c María-Ángeles García-Ferrero and Angkana Rüland |
| 264 | 1 | |c 26 Feb 2019 | |
| 300 | |a 50 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Gesehen am 12.05.2021 | ||
| 520 | |a In this article we study the strong unique continuation property for solutions of higher order (variable coefficient) fractional Schr\"odinger operators. We deduce the strong unique continuation property in the presence of subcritical and critical Hardy type potentials. In the same setting, we address the unique continuation property from measurable sets of positive Lebesgue measure. As applications we prove the antilocality of the higher order fractional Laplacian and Runge type approximation theorems which have recently been exploited in the context of nonlocal Calder\'on type problems. As our main tools, we rely on the characterisation of the higher order fractional Laplacian through a generalised Caffarelli-Silvestre type extension problem and on adapted, iterated Carleman estimates. | ||
| 650 | 4 | |a Mathematics - Analysis of PDEs | |
| 700 | 1 | |a Rüland, Angkana |d 1987- |e VerfasserIn |0 (DE-588)1051987679 |0 (DE-627)787342378 |0 (DE-576)407655506 |4 aut | |
| 773 | 0 | 8 | |i Enthalten in |t Arxiv |d Ithaca, NY : Cornell University, 1991 |g (2019), Artikel-ID 1902.09851, Seite 1-50 |h Online-Ressource |w (DE-627)509006531 |w (DE-600)2225896-6 |w (DE-576)28130436X |7 nnas |a Strong unique continuation for the higher order fractional Laplacian |
| 773 | 1 | 8 | |g year:2019 |g elocationid:1902.09851 |g pages:1-50 |g extent:50 |a Strong unique continuation for the higher order fractional Laplacian |
| 856 | 4 | 0 | |u http://arxiv.org/abs/1902.09851 |x Verlag |z lizenzpflichtig |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20210512 | ||
| 993 | |a Article | ||
| 998 | |g 1051987679 |a Rüland, Angkana |m 1051987679:Rüland, Angkana |p 2 |y j | ||
| 998 | |g 1233397990 |a García-Ferrero, María Ángeles |m 1233397990:García-Ferrero, María Ángeles |p 1 |x j | ||
| 999 | |a KXP-PPN175775699X |e 3927736716 | ||
| BIB | |a Y | ||
| JSO | |a {"relHost":[{"title":[{"title":"Arxiv","title_sort":"Arxiv"}],"titleAlt":[{"title":"Arxiv.org"},{"title":"Arxiv.org e-print archive"},{"title":"Arxiv e-print archive"},{"title":"De.arxiv.org"}],"part":{"year":"2019","pages":"1-50","text":"(2019), Artikel-ID 1902.09851, Seite 1-50","extent":"50"},"pubHistory":["1991 -"],"language":["eng"],"recId":"509006531","note":["Gesehen am 28.05.2024"],"disp":"Strong unique continuation for the higher order fractional LaplacianArxiv","type":{"bibl":"edited-book","media":"Online-Ressource"},"id":{"eki":["509006531"],"zdb":["2225896-6"]},"origin":[{"publisher":"Cornell University ; Arxiv.org","dateIssuedKey":"1991","dateIssuedDisp":"1991-","publisherPlace":"Ithaca, NY ; [Erscheinungsort nicht ermittelbar]"}],"physDesc":[{"extent":"Online-Ressource"}]}],"physDesc":[{"extent":"50 S."}],"name":{"displayForm":["María-Ángeles García-Ferrero and Angkana Rüland"]},"id":{"eki":["175775699X"]},"origin":[{"dateIssuedDisp":"26 Feb 2019","dateIssuedKey":"2019"}],"recId":"175775699X","language":["eng"],"note":["Gesehen am 12.05.2021"],"type":{"media":"Online-Ressource","bibl":"chapter"},"person":[{"family":"García-Ferrero","given":"María Ángeles","roleDisplay":"VerfasserIn","display":"García-Ferrero, María Ángeles","role":"aut"},{"given":"Angkana","family":"Rüland","role":"aut","display":"Rüland, Angkana","roleDisplay":"VerfasserIn"}],"title":[{"title_sort":"Strong unique continuation for the higher order fractional Laplacian","title":"Strong unique continuation for the higher order fractional Laplacian"}]} | ||
| SRT | |a GARCIAFERRSTRONGUNIQ2620 | ||