Strong unique continuation for the higher order fractional Laplacian

In this article we study the strong unique continuation property for solutions of higher order (variable coefficient) fractional Schr\"odinger operators. We deduce the strong unique continuation property in the presence of subcritical and critical Hardy type potentials. In the same setting, we...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: García-Ferrero, María Ángeles (VerfasserIn) , Rüland, Angkana (VerfasserIn)
Dokumenttyp: Article (Journal) Kapitel/Artikel
Sprache:Englisch
Veröffentlicht: 26 Feb 2019
In: Arxiv
Year: 2019, Pages: 1-50
Online-Zugang:Verlag, lizenzpflichtig, Volltext: http://arxiv.org/abs/1902.09851
Volltext
Verfasserangaben:María-Ángeles García-Ferrero and Angkana Rüland
Beschreibung
Zusammenfassung:In this article we study the strong unique continuation property for solutions of higher order (variable coefficient) fractional Schr\"odinger operators. We deduce the strong unique continuation property in the presence of subcritical and critical Hardy type potentials. In the same setting, we address the unique continuation property from measurable sets of positive Lebesgue measure. As applications we prove the antilocality of the higher order fractional Laplacian and Runge type approximation theorems which have recently been exploited in the context of nonlocal Calder\'on type problems. As our main tools, we rely on the characterisation of the higher order fractional Laplacian through a generalised Caffarelli-Silvestre type extension problem and on adapted, iterated Carleman estimates.
Beschreibung:Gesehen am 12.05.2021
Beschreibung:Online Resource