Strong unique continuation for the higher order fractional Laplacian
In this article we study the strong unique continuation property for solutions of higher order (variable coefficient) fractional Schrödinger operators. We deduce the strong unique continuation property in the presence of subcritical and critical Hardy type potentials. In the same setting, we addres...
Gespeichert in:
| Hauptverfasser: | , |
|---|---|
| Dokumenttyp: | Article (Journal) |
| Sprache: | Englisch |
| Veröffentlicht: |
20 August 2019
|
| In: |
Mathematics in engineering
Year: 2019, Jahrgang: 1, Heft: 4, Pages: 715-774 |
| ISSN: | 2640-3501 |
| DOI: | 10.3934/mine.2019.4.715 |
| Online-Zugang: | Verlag, lizenzpflichtig, Volltext: https://doi.org/10.3934/mine.2019.4.715 Verlag, lizenzpflichtig, Volltext: http://www.aimspress.com/rticle/doi/10.3934/mine.2019.4.715 |
| Verfasserangaben: | María Ángeles García-Ferrero and Angkana Rüland |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 175775704X | ||
| 003 | DE-627 | ||
| 005 | 20220819204407.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 210512s2019 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.3934/mine.2019.4.715 |2 doi | |
| 035 | |a (DE-627)175775704X | ||
| 035 | |a (DE-599)KXP175775704X | ||
| 035 | |a (OCoLC)1341413069 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 27 |2 sdnb | ||
| 100 | 1 | |a García-Ferrero, María Ángeles |d 1991- |e VerfasserIn |0 (DE-588)1233397990 |0 (DE-627)1757753737 |4 aut | |
| 245 | 1 | 0 | |a Strong unique continuation for the higher order fractional Laplacian |c María Ángeles García-Ferrero and Angkana Rüland |
| 264 | 1 | |c 20 August 2019 | |
| 300 | |a 60 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Gesehen am 12.05.2021 | ||
| 520 | |a In this article we study the strong unique continuation property for solutions of higher order (variable coefficient) fractional Schrödinger operators. We deduce the strong unique continuation property in the presence of subcritical and critical Hardy type potentials. In the same setting, we address the unique continuation property from measurable sets of positive Lebesgue measure. As applications we prove the antilocality of the higher order fractional Laplacian and Runge type approximation theorems which have recently been exploited in the context of nonlocal Calderón type problems. As our main tools, we rely on the characterisation of the higher order fractional Laplacian through a generalised Caffarelli-Silvestre type extension problem and on adapted, iterated Carleman estimates. | ||
| 700 | 1 | |a Rüland, Angkana |d 1987- |e VerfasserIn |0 (DE-588)1051987679 |0 (DE-627)787342378 |0 (DE-576)407655506 |4 aut | |
| 773 | 0 | 8 | |i Enthalten in |t Mathematics in engineering |d Springfield, MO : AIMS Press, 2019 |g 1(2019), 4, Seite 715-774 |h Online-Ressource |w (DE-627)1678058971 |w (DE-600)2985862-8 |x 2640-3501 |7 nnas |a Strong unique continuation for the higher order fractional Laplacian |
| 773 | 1 | 8 | |g volume:1 |g year:2019 |g number:4 |g pages:715-774 |g extent:60 |a Strong unique continuation for the higher order fractional Laplacian |
| 856 | 4 | 0 | |u https://doi.org/10.3934/mine.2019.4.715 |x Verlag |x Resolving-System |z lizenzpflichtig |3 Volltext |
| 856 | 4 | 0 | |u http://www.aimspress.com/rticle/doi/10.3934/mine.2019.4.715 |x Verlag |z lizenzpflichtig |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20210512 | ||
| 993 | |a Article | ||
| 994 | |a 2019 | ||
| 998 | |g 1051987679 |a Rüland, Angkana |m 1051987679:Rüland, Angkana |p 2 |y j | ||
| 998 | |g 1233397990 |a García-Ferrero, María Ángeles |m 1233397990:García-Ferrero, María Ángeles |p 1 |x j | ||
| 999 | |a KXP-PPN175775704X |e 3927736864 | ||
| BIB | |a Y | ||
| SER | |a journal | ||
| JSO | |a {"id":{"eki":["175775704X"],"doi":["10.3934/mine.2019.4.715"]},"origin":[{"dateIssuedKey":"2019","dateIssuedDisp":"20 August 2019"}],"name":{"displayForm":["María Ángeles García-Ferrero and Angkana Rüland"]},"relHost":[{"origin":[{"dateIssuedDisp":"[2019]-","publisher":"AIMS Press","publisherPlace":"Springfield, MO"}],"id":{"issn":["2640-3501"],"zdb":["2985862-8"],"eki":["1678058971"]},"physDesc":[{"extent":"Online-Ressource"}],"title":[{"subtitle":"MIE","title":"Mathematics in engineering","title_sort":"Mathematics in engineering"}],"pubHistory":["Volume 1, issue 1 (2019)-"],"part":{"year":"2019","issue":"4","pages":"715-774","volume":"1","text":"1(2019), 4, Seite 715-774","extent":"60"},"titleAlt":[{"title":"MIE"}],"disp":"Strong unique continuation for the higher order fractional LaplacianMathematics in engineering","type":{"bibl":"periodical","media":"Online-Ressource"},"note":["Gesehen am 18.10.19"],"language":["eng"],"recId":"1678058971"}],"physDesc":[{"extent":"60 S."}],"title":[{"title":"Strong unique continuation for the higher order fractional Laplacian","title_sort":"Strong unique continuation for the higher order fractional Laplacian"}],"person":[{"role":"aut","display":"García-Ferrero, María Ángeles","roleDisplay":"VerfasserIn","given":"María Ángeles","family":"García-Ferrero"},{"display":"Rüland, Angkana","roleDisplay":"VerfasserIn","role":"aut","family":"Rüland","given":"Angkana"}],"recId":"175775704X","language":["eng"],"type":{"media":"Online-Ressource","bibl":"article-journal"},"note":["Gesehen am 12.05.2021"]} | ||
| SRT | |a GARCIAFERRSTRONGUNIQ2020 | ||