Strong unique continuation for the higher order fractional Laplacian

In this article we study the strong unique continuation property for solutions of higher order (variable coefficient) fractional Schrödinger operators. We deduce the strong unique continuation property in the presence of subcritical and critical Hardy type potentials. In the same setting, we addres...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: García-Ferrero, María Ángeles (VerfasserIn) , Rüland, Angkana (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 20 August 2019
In: Mathematics in engineering
Year: 2019, Jahrgang: 1, Heft: 4, Pages: 715-774
ISSN:2640-3501
DOI:10.3934/mine.2019.4.715
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.3934/mine.2019.4.715
Verlag, lizenzpflichtig, Volltext: http://www.aimspress.com/rticle/doi/10.3934/mine.2019.4.715
Volltext
Verfasserangaben:María Ángeles García-Ferrero and Angkana Rüland

MARC

LEADER 00000caa a2200000 c 4500
001 175775704X
003 DE-627
005 20220819204407.0
007 cr uuu---uuuuu
008 210512s2019 xx |||||o 00| ||eng c
024 7 |a 10.3934/mine.2019.4.715  |2 doi 
035 |a (DE-627)175775704X 
035 |a (DE-599)KXP175775704X 
035 |a (OCoLC)1341413069 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 27  |2 sdnb 
100 1 |a García-Ferrero, María Ángeles  |d 1991-  |e VerfasserIn  |0 (DE-588)1233397990  |0 (DE-627)1757753737  |4 aut 
245 1 0 |a Strong unique continuation for the higher order fractional Laplacian  |c María Ángeles García-Ferrero and Angkana Rüland 
264 1 |c 20 August 2019 
300 |a 60 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 12.05.2021 
520 |a In this article we study the strong unique continuation property for solutions of higher order (variable coefficient) fractional Schrödinger operators. We deduce the strong unique continuation property in the presence of subcritical and critical Hardy type potentials. In the same setting, we address the unique continuation property from measurable sets of positive Lebesgue measure. As applications we prove the antilocality of the higher order fractional Laplacian and Runge type approximation theorems which have recently been exploited in the context of nonlocal Calderón type problems. As our main tools, we rely on the characterisation of the higher order fractional Laplacian through a generalised Caffarelli-Silvestre type extension problem and on adapted, iterated Carleman estimates. 
700 1 |a Rüland, Angkana  |d 1987-  |e VerfasserIn  |0 (DE-588)1051987679  |0 (DE-627)787342378  |0 (DE-576)407655506  |4 aut 
773 0 8 |i Enthalten in  |t Mathematics in engineering  |d Springfield, MO : AIMS Press, 2019  |g 1(2019), 4, Seite 715-774  |h Online-Ressource  |w (DE-627)1678058971  |w (DE-600)2985862-8  |x 2640-3501  |7 nnas  |a Strong unique continuation for the higher order fractional Laplacian 
773 1 8 |g volume:1  |g year:2019  |g number:4  |g pages:715-774  |g extent:60  |a Strong unique continuation for the higher order fractional Laplacian 
856 4 0 |u https://doi.org/10.3934/mine.2019.4.715  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u http://www.aimspress.com/rticle/doi/10.3934/mine.2019.4.715  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20210512 
993 |a Article 
994 |a 2019 
998 |g 1051987679  |a Rüland, Angkana  |m 1051987679:Rüland, Angkana  |p 2  |y j 
998 |g 1233397990  |a García-Ferrero, María Ángeles  |m 1233397990:García-Ferrero, María Ángeles  |p 1  |x j 
999 |a KXP-PPN175775704X  |e 3927736864 
BIB |a Y 
SER |a journal 
JSO |a {"id":{"eki":["175775704X"],"doi":["10.3934/mine.2019.4.715"]},"origin":[{"dateIssuedKey":"2019","dateIssuedDisp":"20 August 2019"}],"name":{"displayForm":["María Ángeles García-Ferrero and Angkana Rüland"]},"relHost":[{"origin":[{"dateIssuedDisp":"[2019]-","publisher":"AIMS Press","publisherPlace":"Springfield, MO"}],"id":{"issn":["2640-3501"],"zdb":["2985862-8"],"eki":["1678058971"]},"physDesc":[{"extent":"Online-Ressource"}],"title":[{"subtitle":"MIE","title":"Mathematics in engineering","title_sort":"Mathematics in engineering"}],"pubHistory":["Volume 1, issue 1 (2019)-"],"part":{"year":"2019","issue":"4","pages":"715-774","volume":"1","text":"1(2019), 4, Seite 715-774","extent":"60"},"titleAlt":[{"title":"MIE"}],"disp":"Strong unique continuation for the higher order fractional LaplacianMathematics in engineering","type":{"bibl":"periodical","media":"Online-Ressource"},"note":["Gesehen am 18.10.19"],"language":["eng"],"recId":"1678058971"}],"physDesc":[{"extent":"60 S."}],"title":[{"title":"Strong unique continuation for the higher order fractional Laplacian","title_sort":"Strong unique continuation for the higher order fractional Laplacian"}],"person":[{"role":"aut","display":"García-Ferrero, María Ángeles","roleDisplay":"VerfasserIn","given":"María Ángeles","family":"García-Ferrero"},{"display":"Rüland, Angkana","roleDisplay":"VerfasserIn","role":"aut","family":"Rüland","given":"Angkana"}],"recId":"175775704X","language":["eng"],"type":{"media":"Online-Ressource","bibl":"article-journal"},"note":["Gesehen am 12.05.2021"]} 
SRT |a GARCIAFERRSTRONGUNIQ2020