Strong unique continuation for the higher order fractional Laplacian

In this article we study the strong unique continuation property for solutions of higher order (variable coefficient) fractional Schrödinger operators. We deduce the strong unique continuation property in the presence of subcritical and critical Hardy type potentials. In the same setting, we addres...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: García-Ferrero, María Ángeles (VerfasserIn) , Rüland, Angkana (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 20 August 2019
In: Mathematics in engineering
Year: 2019, Jahrgang: 1, Heft: 4, Pages: 715-774
ISSN:2640-3501
DOI:10.3934/mine.2019.4.715
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.3934/mine.2019.4.715
Verlag, lizenzpflichtig, Volltext: http://www.aimspress.com/rticle/doi/10.3934/mine.2019.4.715
Volltext
Verfasserangaben:María Ángeles García-Ferrero and Angkana Rüland
Beschreibung
Zusammenfassung:In this article we study the strong unique continuation property for solutions of higher order (variable coefficient) fractional Schrödinger operators. We deduce the strong unique continuation property in the presence of subcritical and critical Hardy type potentials. In the same setting, we address the unique continuation property from measurable sets of positive Lebesgue measure. As applications we prove the antilocality of the higher order fractional Laplacian and Runge type approximation theorems which have recently been exploited in the context of nonlocal Calderón type problems. As our main tools, we rely on the characterisation of the higher order fractional Laplacian through a generalised Caffarelli-Silvestre type extension problem and on adapted, iterated Carleman estimates.
Beschreibung:Gesehen am 12.05.2021
Beschreibung:Online Resource
ISSN:2640-3501
DOI:10.3934/mine.2019.4.715