The Calderón problem for the fractional Schrödinger equation with drift
We investigate the Calder\'on problem for the fractional Schr\"odinger equation with drift, proving that the unknown drift and potential in a bounded domain can be determined simultaneously and uniquely by an infinite number of exterior measurements. In particular, in contrast to its local...
Gespeichert in:
| Hauptverfasser: | , , |
|---|---|
| Dokumenttyp: | Article (Journal) Kapitel/Artikel |
| Sprache: | Englisch |
| Veröffentlicht: |
18 Dec 2018
|
| In: |
Arxiv
Year: 2018, Pages: 1-42 |
| Online-Zugang: | Verlag, lizenzpflichtig, Volltext: http://arxiv.org/abs/1810.04211 |
| Verfasserangaben: | Mihajlo Cekić, Yi-Hsuan Lin, and Angkana Rüland |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1757757228 | ||
| 003 | DE-627 | ||
| 005 | 20220819204421.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 210512s2018 xx |||||o 00| ||eng c | ||
| 035 | |a (DE-627)1757757228 | ||
| 035 | |a (DE-599)KXP1757757228 | ||
| 035 | |a (OCoLC)1341409006 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 27 |2 sdnb | ||
| 100 | 1 | |a Cekić, Mihajlo |e VerfasserIn |0 (DE-588)1211967158 |0 (DE-627)170057227X |4 aut | |
| 245 | 1 | 4 | |a The Calderón problem for the fractional Schrödinger equation with drift |c Mihajlo Cekić, Yi-Hsuan Lin, and Angkana Rüland |
| 264 | 1 | |c 18 Dec 2018 | |
| 300 | |a 42 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Gesehen am 12.05.2021 | ||
| 520 | |a We investigate the Calder\'on problem for the fractional Schr\"odinger equation with drift, proving that the unknown drift and potential in a bounded domain can be determined simultaneously and uniquely by an infinite number of exterior measurements. In particular, in contrast to its local analogue, this nonlocal problem does \emph{not} enjoy a gauge invariance. The uniqueness result is complemented by an associated logarithmic stability estimate under suitable apriori assumptions. Also uniqueness under finitely many \emph{generic} measurements is discussed. Here the genericity is obtained through \emph{singularity theory} which might also be interesting in the context of hybrid inverse problems. Combined with the results from \cite{GRSU18}, this yields a finite measurements constructive reconstruction algorithm for the fractional Calder\'on problem with drift. The inverse problem is formulated as a partial data type nonlocal problem and it is considered in any dimension $n\geq 1$. | ||
| 650 | 4 | |a Mathematics - Analysis of PDEs | |
| 700 | 1 | |a Lin, Yi-Hsuan |e VerfasserIn |0 (DE-588)121666059X |0 (DE-627)1727911415 |4 aut | |
| 700 | 1 | |a Rüland, Angkana |d 1987- |e VerfasserIn |0 (DE-588)1051987679 |0 (DE-627)787342378 |0 (DE-576)407655506 |4 aut | |
| 773 | 0 | 8 | |i Enthalten in |t Arxiv |d Ithaca, NY : Cornell University, 1991 |g (2018), Artikel-ID 1810.04211, Seite 1-42 |h Online-Ressource |w (DE-627)509006531 |w (DE-600)2225896-6 |w (DE-576)28130436X |7 nnas |a The Calderón problem for the fractional Schrödinger equation with drift |
| 773 | 1 | 8 | |g year:2018 |g elocationid:1810.04211 |g pages:1-42 |g extent:42 |a The Calderón problem for the fractional Schrödinger equation with drift |
| 856 | 4 | 0 | |u http://arxiv.org/abs/1810.04211 |x Verlag |z lizenzpflichtig |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20210512 | ||
| 993 | |a Article | ||
| 994 | |a 2018 | ||
| 998 | |g 1051987679 |a Rüland, Angkana |m 1051987679:Rüland, Angkana |p 3 |y j | ||
| 999 | |a KXP-PPN1757757228 |e 3927737240 | ||
| BIB | |a Y | ||
| JSO | |a {"relHost":[{"physDesc":[{"extent":"Online-Ressource"}],"id":{"eki":["509006531"],"zdb":["2225896-6"]},"origin":[{"publisher":"Cornell University ; Arxiv.org","dateIssuedKey":"1991","dateIssuedDisp":"1991-","publisherPlace":"Ithaca, NY ; [Erscheinungsort nicht ermittelbar]"}],"language":["eng"],"recId":"509006531","note":["Gesehen am 28.05.2024"],"disp":"The Calderón problem for the fractional Schrödinger equation with driftArxiv","type":{"bibl":"edited-book","media":"Online-Ressource"},"part":{"extent":"42","text":"(2018), Artikel-ID 1810.04211, Seite 1-42","pages":"1-42","year":"2018"},"titleAlt":[{"title":"Arxiv.org"},{"title":"Arxiv.org e-print archive"},{"title":"Arxiv e-print archive"},{"title":"De.arxiv.org"}],"pubHistory":["1991 -"],"title":[{"title":"Arxiv","title_sort":"Arxiv"}]}],"physDesc":[{"extent":"42 S."}],"id":{"eki":["1757757228"]},"origin":[{"dateIssuedDisp":"18 Dec 2018","dateIssuedKey":"2018"}],"name":{"displayForm":["Mihajlo Cekić, Yi-Hsuan Lin, and Angkana Rüland"]},"language":["eng"],"recId":"1757757228","type":{"bibl":"chapter","media":"Online-Ressource"},"note":["Gesehen am 12.05.2021"],"title":[{"title_sort":"Calderón problem for the fractional Schrödinger equation with drift","title":"The Calderón problem for the fractional Schrödinger equation with drift"}],"person":[{"role":"aut","display":"Cekić, Mihajlo","roleDisplay":"VerfasserIn","given":"Mihajlo","family":"Cekić"},{"given":"Yi-Hsuan","family":"Lin","role":"aut","display":"Lin, Yi-Hsuan","roleDisplay":"VerfasserIn"},{"given":"Angkana","family":"Rüland","role":"aut","display":"Rüland, Angkana","roleDisplay":"VerfasserIn"}]} | ||
| SRT | |a CEKICMIHAJCALDERONPR1820 | ||