The Calderón problem for the fractional Schrödinger equation with drift

We investigate the Calder\'on problem for the fractional Schr\"odinger equation with drift, proving that the unknown drift and potential in a bounded domain can be determined simultaneously and uniquely by an infinite number of exterior measurements. In particular, in contrast to its local...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Cekić, Mihajlo (VerfasserIn) , Lin, Yi-Hsuan (VerfasserIn) , Rüland, Angkana (VerfasserIn)
Dokumenttyp: Article (Journal) Kapitel/Artikel
Sprache:Englisch
Veröffentlicht: 18 Dec 2018
In: Arxiv
Year: 2018, Pages: 1-42
Online-Zugang:Verlag, lizenzpflichtig, Volltext: http://arxiv.org/abs/1810.04211
Volltext
Verfasserangaben:Mihajlo Cekić, Yi-Hsuan Lin, and Angkana Rüland

MARC

LEADER 00000caa a2200000 c 4500
001 1757757228
003 DE-627
005 20220819204421.0
007 cr uuu---uuuuu
008 210512s2018 xx |||||o 00| ||eng c
035 |a (DE-627)1757757228 
035 |a (DE-599)KXP1757757228 
035 |a (OCoLC)1341409006 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 27  |2 sdnb 
100 1 |a Cekić, Mihajlo  |e VerfasserIn  |0 (DE-588)1211967158  |0 (DE-627)170057227X  |4 aut 
245 1 4 |a The Calderón problem for the fractional Schrödinger equation with drift  |c Mihajlo Cekić, Yi-Hsuan Lin, and Angkana Rüland 
264 1 |c 18 Dec 2018 
300 |a 42 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 12.05.2021 
520 |a We investigate the Calder\'on problem for the fractional Schr\"odinger equation with drift, proving that the unknown drift and potential in a bounded domain can be determined simultaneously and uniquely by an infinite number of exterior measurements. In particular, in contrast to its local analogue, this nonlocal problem does \emph{not} enjoy a gauge invariance. The uniqueness result is complemented by an associated logarithmic stability estimate under suitable apriori assumptions. Also uniqueness under finitely many \emph{generic} measurements is discussed. Here the genericity is obtained through \emph{singularity theory} which might also be interesting in the context of hybrid inverse problems. Combined with the results from \cite{GRSU18}, this yields a finite measurements constructive reconstruction algorithm for the fractional Calder\'on problem with drift. The inverse problem is formulated as a partial data type nonlocal problem and it is considered in any dimension $n\geq 1$. 
650 4 |a Mathematics - Analysis of PDEs 
700 1 |a Lin, Yi-Hsuan  |e VerfasserIn  |0 (DE-588)121666059X  |0 (DE-627)1727911415  |4 aut 
700 1 |a Rüland, Angkana  |d 1987-  |e VerfasserIn  |0 (DE-588)1051987679  |0 (DE-627)787342378  |0 (DE-576)407655506  |4 aut 
773 0 8 |i Enthalten in  |t Arxiv  |d Ithaca, NY : Cornell University, 1991  |g (2018), Artikel-ID 1810.04211, Seite 1-42  |h Online-Ressource  |w (DE-627)509006531  |w (DE-600)2225896-6  |w (DE-576)28130436X  |7 nnas  |a The Calderón problem for the fractional Schrödinger equation with drift 
773 1 8 |g year:2018  |g elocationid:1810.04211  |g pages:1-42  |g extent:42  |a The Calderón problem for the fractional Schrödinger equation with drift 
856 4 0 |u http://arxiv.org/abs/1810.04211  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20210512 
993 |a Article 
994 |a 2018 
998 |g 1051987679  |a Rüland, Angkana  |m 1051987679:Rüland, Angkana  |p 3  |y j 
999 |a KXP-PPN1757757228  |e 3927737240 
BIB |a Y 
JSO |a {"relHost":[{"physDesc":[{"extent":"Online-Ressource"}],"id":{"eki":["509006531"],"zdb":["2225896-6"]},"origin":[{"publisher":"Cornell University ; Arxiv.org","dateIssuedKey":"1991","dateIssuedDisp":"1991-","publisherPlace":"Ithaca, NY ; [Erscheinungsort nicht ermittelbar]"}],"language":["eng"],"recId":"509006531","note":["Gesehen am 28.05.2024"],"disp":"The Calderón problem for the fractional Schrödinger equation with driftArxiv","type":{"bibl":"edited-book","media":"Online-Ressource"},"part":{"extent":"42","text":"(2018), Artikel-ID 1810.04211, Seite 1-42","pages":"1-42","year":"2018"},"titleAlt":[{"title":"Arxiv.org"},{"title":"Arxiv.org e-print archive"},{"title":"Arxiv e-print archive"},{"title":"De.arxiv.org"}],"pubHistory":["1991 -"],"title":[{"title":"Arxiv","title_sort":"Arxiv"}]}],"physDesc":[{"extent":"42 S."}],"id":{"eki":["1757757228"]},"origin":[{"dateIssuedDisp":"18 Dec 2018","dateIssuedKey":"2018"}],"name":{"displayForm":["Mihajlo Cekić, Yi-Hsuan Lin, and Angkana Rüland"]},"language":["eng"],"recId":"1757757228","type":{"bibl":"chapter","media":"Online-Ressource"},"note":["Gesehen am 12.05.2021"],"title":[{"title_sort":"Calderón problem for the fractional Schrödinger equation with drift","title":"The Calderón problem for the fractional Schrödinger equation with drift"}],"person":[{"role":"aut","display":"Cekić, Mihajlo","roleDisplay":"VerfasserIn","given":"Mihajlo","family":"Cekić"},{"given":"Yi-Hsuan","family":"Lin","role":"aut","display":"Lin, Yi-Hsuan","roleDisplay":"VerfasserIn"},{"given":"Angkana","family":"Rüland","role":"aut","display":"Rüland, Angkana","roleDisplay":"VerfasserIn"}]} 
SRT |a CEKICMIHAJCALDERONPR1820