On the fractional landis conjecture
In this paper we study a Landis-type conjecture for fractional Schr\"odinger equations of fractional power $s\in(0,1)$ with potentials. We discuss both the cases of differentiable and non-differentiable potentials. On the one hand, it turns out for \emph{differentiable} potentials with some a p...
Gespeichert in:
| Hauptverfasser: | , |
|---|---|
| Dokumenttyp: | Article (Journal) Kapitel/Artikel |
| Sprache: | Englisch |
| Veröffentlicht: |
12 Sept 2018
|
| In: |
Arxiv
Year: 2018, Pages: 1-27 |
| Online-Zugang: | Verlag, lizenzpflichtig, Volltext: http://arxiv.org/abs/1809.04480 |
| Verfasserangaben: | Angkana Rüland and Jenn-Nan Wang |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 175775735X | ||
| 003 | DE-627 | ||
| 005 | 20220819204427.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 210512s2018 xx |||||o 00| ||eng c | ||
| 035 | |a (DE-627)175775735X | ||
| 035 | |a (DE-599)KXP175775735X | ||
| 035 | |a (OCoLC)1341409007 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 27 |2 sdnb | ||
| 100 | 1 | |a Rüland, Angkana |d 1987- |e VerfasserIn |0 (DE-588)1051987679 |0 (DE-627)787342378 |0 (DE-576)407655506 |4 aut | |
| 245 | 1 | 0 | |a On the fractional landis conjecture |c Angkana Rüland and Jenn-Nan Wang |
| 264 | 1 | |c 12 Sept 2018 | |
| 300 | |a 27 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Gesehen am 12.05.2021 | ||
| 520 | |a In this paper we study a Landis-type conjecture for fractional Schr\"odinger equations of fractional power $s\in(0,1)$ with potentials. We discuss both the cases of differentiable and non-differentiable potentials. On the one hand, it turns out for \emph{differentiable} potentials with some a priori bounds, if a solution decays at a rate $e^{-|x|^{1+}}$, then this solution is trivial. On the other hand, for $s\in(1/4,1)$ and merely bounded \emph{non-differentiable} potentials, if a solution decays at a rate $e^{-|x|^\alpha}$ with $\alpha>4s/(4s-1)$, then this solution must again be trivial. Remark that when $s\to 1$, $4s/(4s-1)\to 4/3$ which is the optimal exponent for the standard Laplacian. For the case of non-differential potentials and $s\in(1/4,1)$, we also derive a quantitative estimate mimicking the classical result by Bourgain and Kenig. | ||
| 650 | 4 | |a Mathematics - Analysis of PDEs | |
| 700 | 1 | |a Wang, Jenn-Nan |e VerfasserIn |0 (DE-588)1233399586 |0 (DE-627)1757757414 |4 aut | |
| 773 | 0 | 8 | |i Enthalten in |t Arxiv |d Ithaca, NY : Cornell University, 1991 |g (2018), Artikel-ID 1809.04480, Seite 1-27 |h Online-Ressource |w (DE-627)509006531 |w (DE-600)2225896-6 |w (DE-576)28130436X |7 nnas |a On the fractional landis conjecture |
| 773 | 1 | 8 | |g year:2018 |g elocationid:1809.04480 |g pages:1-27 |g extent:27 |a On the fractional landis conjecture |
| 856 | 4 | 0 | |u http://arxiv.org/abs/1809.04480 |x Verlag |z lizenzpflichtig |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20210512 | ||
| 993 | |a Article | ||
| 994 | |a 2018 | ||
| 998 | |g 1051987679 |a Rüland, Angkana |m 1051987679:Rüland, Angkana |p 1 |x j | ||
| 999 | |a KXP-PPN175775735X |e 3927737518 | ||
| BIB | |a Y | ||
| JSO | |a {"name":{"displayForm":["Angkana Rüland and Jenn-Nan Wang"]},"id":{"eki":["175775735X"]},"origin":[{"dateIssuedDisp":"12 Sept 2018","dateIssuedKey":"2018"}],"relHost":[{"origin":[{"publisherPlace":"Ithaca, NY ; [Erscheinungsort nicht ermittelbar]","dateIssuedDisp":"1991-","dateIssuedKey":"1991","publisher":"Cornell University ; Arxiv.org"}],"id":{"eki":["509006531"],"zdb":["2225896-6"]},"physDesc":[{"extent":"Online-Ressource"}],"title":[{"title_sort":"Arxiv","title":"Arxiv"}],"pubHistory":["1991 -"],"part":{"pages":"1-27","year":"2018","extent":"27","text":"(2018), Artikel-ID 1809.04480, Seite 1-27"},"titleAlt":[{"title":"Arxiv.org"},{"title":"Arxiv.org e-print archive"},{"title":"Arxiv e-print archive"},{"title":"De.arxiv.org"}],"type":{"media":"Online-Ressource","bibl":"edited-book"},"disp":"On the fractional landis conjectureArxiv","note":["Gesehen am 28.05.2024"],"language":["eng"],"recId":"509006531"}],"physDesc":[{"extent":"27 S."}],"person":[{"given":"Angkana","family":"Rüland","role":"aut","display":"Rüland, Angkana","roleDisplay":"VerfasserIn"},{"given":"Jenn-Nan","family":"Wang","role":"aut","display":"Wang, Jenn-Nan","roleDisplay":"VerfasserIn"}],"title":[{"title_sort":"On the fractional landis conjecture","title":"On the fractional landis conjecture"}],"language":["eng"],"recId":"175775735X","note":["Gesehen am 12.05.2021"],"type":{"bibl":"chapter","media":"Online-Ressource"}} | ||
| SRT | |a RUELANDANGONTHEFRACT1220 | ||