On the fractional Landis conjecture

In this paper we study a Landis-type conjecture for fractional Schrödinger equations of fractional power s∈(0,1) with potentials. We discuss both the cases of differentiable and non-differentiable potentials. On the one hand, it turns out for differentiable potentials with some a priori bounds, if...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Rüland, Angkana (VerfasserIn) , Wang, Jenn-Nan (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 7 June 2019
In: Journal of functional analysis
Year: 2019, Jahrgang: 277, Heft: 9, Pages: 3236-3270
ISSN:1096-0783
DOI:10.1016/j.jfa.2019.05.026
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1016/j.jfa.2019.05.026
Verlag, lizenzpflichtig, Volltext: https://www.sciencedirect.com/science/article/pii/S0022123619302022
Volltext
Verfasserangaben:Angkana Rüland, Jenn-Nan Wang

MARC

LEADER 00000caa a2200000 c 4500
001 1757757457
003 DE-627
005 20220819204434.0
007 cr uuu---uuuuu
008 210512s2019 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.jfa.2019.05.026  |2 doi 
035 |a (DE-627)1757757457 
035 |a (DE-599)KXP1757757457 
035 |a (OCoLC)1341409008 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 27  |2 sdnb 
100 1 |a Rüland, Angkana  |d 1987-  |e VerfasserIn  |0 (DE-588)1051987679  |0 (DE-627)787342378  |0 (DE-576)407655506  |4 aut 
245 1 0 |a On the fractional Landis conjecture  |c Angkana Rüland, Jenn-Nan Wang 
264 1 |c 7 June 2019 
300 |a 35 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 12.05.2021 
520 |a In this paper we study a Landis-type conjecture for fractional Schrödinger equations of fractional power s∈(0,1) with potentials. We discuss both the cases of differentiable and non-differentiable potentials. On the one hand, it turns out for differentiable potentials with some a priori bounds, if a solution decays at a rate e−|x|1+, then this solution is trivial. On the other hand, for s∈(1/4,1) and merely bounded non-differentiable potentials, if a solution decays at a rate e−|x|α with α>4s/(4s−1), then this solution must again be trivial. Remark that when s→1, 4s/(4s−1)→4/3 which is the optimal exponent for the standard Laplacian. For the case of non-differentiable potentials and s∈(1/4,1), we also derive a quantitative estimate mimicking the classical result by Bourgain and Kenig. 
650 4 |a Fractional Laplacian 
650 4 |a Landis conjecture 
700 1 |a Wang, Jenn-Nan  |e VerfasserIn  |0 (DE-588)1233399586  |0 (DE-627)1757757414  |4 aut 
773 0 8 |i Enthalten in  |t Journal of functional analysis  |d Amsterdam [u.a.] : Elsevier, 1967  |g 277(2019), 9, Seite 3236-3270  |w (DE-627)267326831  |w (DE-600)1469633-2  |w (DE-576)103373217  |x 1096-0783  |7 nnas  |a On the fractional Landis conjecture 
773 1 8 |g volume:277  |g year:2019  |g number:9  |g pages:3236-3270  |g extent:35  |a On the fractional Landis conjecture 
856 4 0 |u https://doi.org/10.1016/j.jfa.2019.05.026  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u https://www.sciencedirect.com/science/article/pii/S0022123619302022  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20210512 
993 |a Article 
994 |a 2019 
998 |g 1051987679  |a Rüland, Angkana  |m 1051987679:Rüland, Angkana  |p 1  |x j 
999 |a KXP-PPN1757757457  |e 3927737917 
BIB |a Y 
SER |a journal 
JSO |a {"person":[{"family":"Rüland","given":"Angkana","display":"Rüland, Angkana","roleDisplay":"VerfasserIn","role":"aut"},{"family":"Wang","given":"Jenn-Nan","roleDisplay":"VerfasserIn","display":"Wang, Jenn-Nan","role":"aut"}],"title":[{"title_sort":"On the fractional Landis conjecture","title":"On the fractional Landis conjecture"}],"type":{"bibl":"article-journal","media":"Online-Ressource"},"note":["Gesehen am 12.05.2021"],"recId":"1757757457","language":["eng"],"name":{"displayForm":["Angkana Rüland, Jenn-Nan Wang"]},"origin":[{"dateIssuedDisp":"7 June 2019","dateIssuedKey":"2019"}],"id":{"doi":["10.1016/j.jfa.2019.05.026"],"eki":["1757757457"]},"physDesc":[{"extent":"35 S."}],"relHost":[{"part":{"extent":"35","volume":"277","text":"277(2019), 9, Seite 3236-3270","issue":"9","pages":"3236-3270","year":"2019"},"pubHistory":["1.1967 -"],"recId":"267326831","language":["eng"],"note":["Gesehen am 16.07.13"],"disp":"On the fractional Landis conjectureJournal of functional analysis","type":{"bibl":"periodical","media":"Online-Ressource"},"id":{"issn":["1096-0783"],"eki":["267326831"],"zdb":["1469633-2"]},"title":[{"title":"Journal of functional analysis","title_sort":"Journal of functional analysis"}],"origin":[{"dateIssuedDisp":"1967-","publisher":"Elsevier ; Academic Press","dateIssuedKey":"1967","publisherPlace":"Amsterdam [u.a.] ; New York, NY [u.a]"}]}]} 
SRT |a RUELANDANGONTHEFRACT7201