On the fractional Landis conjecture
In this paper we study a Landis-type conjecture for fractional Schrödinger equations of fractional power s∈(0,1) with potentials. We discuss both the cases of differentiable and non-differentiable potentials. On the one hand, it turns out for differentiable potentials with some a priori bounds, if...
Gespeichert in:
| Hauptverfasser: | , |
|---|---|
| Dokumenttyp: | Article (Journal) |
| Sprache: | Englisch |
| Veröffentlicht: |
7 June 2019
|
| In: |
Journal of functional analysis
Year: 2019, Jahrgang: 277, Heft: 9, Pages: 3236-3270 |
| ISSN: | 1096-0783 |
| DOI: | 10.1016/j.jfa.2019.05.026 |
| Online-Zugang: | Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1016/j.jfa.2019.05.026 Verlag, lizenzpflichtig, Volltext: https://www.sciencedirect.com/science/article/pii/S0022123619302022 |
| Verfasserangaben: | Angkana Rüland, Jenn-Nan Wang |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1757757457 | ||
| 003 | DE-627 | ||
| 005 | 20220819204434.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 210512s2019 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.1016/j.jfa.2019.05.026 |2 doi | |
| 035 | |a (DE-627)1757757457 | ||
| 035 | |a (DE-599)KXP1757757457 | ||
| 035 | |a (OCoLC)1341409008 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 27 |2 sdnb | ||
| 100 | 1 | |a Rüland, Angkana |d 1987- |e VerfasserIn |0 (DE-588)1051987679 |0 (DE-627)787342378 |0 (DE-576)407655506 |4 aut | |
| 245 | 1 | 0 | |a On the fractional Landis conjecture |c Angkana Rüland, Jenn-Nan Wang |
| 264 | 1 | |c 7 June 2019 | |
| 300 | |a 35 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Gesehen am 12.05.2021 | ||
| 520 | |a In this paper we study a Landis-type conjecture for fractional Schrödinger equations of fractional power s∈(0,1) with potentials. We discuss both the cases of differentiable and non-differentiable potentials. On the one hand, it turns out for differentiable potentials with some a priori bounds, if a solution decays at a rate e−|x|1+, then this solution is trivial. On the other hand, for s∈(1/4,1) and merely bounded non-differentiable potentials, if a solution decays at a rate e−|x|α with α>4s/(4s−1), then this solution must again be trivial. Remark that when s→1, 4s/(4s−1)→4/3 which is the optimal exponent for the standard Laplacian. For the case of non-differentiable potentials and s∈(1/4,1), we also derive a quantitative estimate mimicking the classical result by Bourgain and Kenig. | ||
| 650 | 4 | |a Fractional Laplacian | |
| 650 | 4 | |a Landis conjecture | |
| 700 | 1 | |a Wang, Jenn-Nan |e VerfasserIn |0 (DE-588)1233399586 |0 (DE-627)1757757414 |4 aut | |
| 773 | 0 | 8 | |i Enthalten in |t Journal of functional analysis |d Amsterdam [u.a.] : Elsevier, 1967 |g 277(2019), 9, Seite 3236-3270 |w (DE-627)267326831 |w (DE-600)1469633-2 |w (DE-576)103373217 |x 1096-0783 |7 nnas |a On the fractional Landis conjecture |
| 773 | 1 | 8 | |g volume:277 |g year:2019 |g number:9 |g pages:3236-3270 |g extent:35 |a On the fractional Landis conjecture |
| 856 | 4 | 0 | |u https://doi.org/10.1016/j.jfa.2019.05.026 |x Verlag |x Resolving-System |z lizenzpflichtig |3 Volltext |
| 856 | 4 | 0 | |u https://www.sciencedirect.com/science/article/pii/S0022123619302022 |x Verlag |z lizenzpflichtig |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20210512 | ||
| 993 | |a Article | ||
| 994 | |a 2019 | ||
| 998 | |g 1051987679 |a Rüland, Angkana |m 1051987679:Rüland, Angkana |p 1 |x j | ||
| 999 | |a KXP-PPN1757757457 |e 3927737917 | ||
| BIB | |a Y | ||
| SER | |a journal | ||
| JSO | |a {"person":[{"family":"Rüland","given":"Angkana","display":"Rüland, Angkana","roleDisplay":"VerfasserIn","role":"aut"},{"family":"Wang","given":"Jenn-Nan","roleDisplay":"VerfasserIn","display":"Wang, Jenn-Nan","role":"aut"}],"title":[{"title_sort":"On the fractional Landis conjecture","title":"On the fractional Landis conjecture"}],"type":{"bibl":"article-journal","media":"Online-Ressource"},"note":["Gesehen am 12.05.2021"],"recId":"1757757457","language":["eng"],"name":{"displayForm":["Angkana Rüland, Jenn-Nan Wang"]},"origin":[{"dateIssuedDisp":"7 June 2019","dateIssuedKey":"2019"}],"id":{"doi":["10.1016/j.jfa.2019.05.026"],"eki":["1757757457"]},"physDesc":[{"extent":"35 S."}],"relHost":[{"part":{"extent":"35","volume":"277","text":"277(2019), 9, Seite 3236-3270","issue":"9","pages":"3236-3270","year":"2019"},"pubHistory":["1.1967 -"],"recId":"267326831","language":["eng"],"note":["Gesehen am 16.07.13"],"disp":"On the fractional Landis conjectureJournal of functional analysis","type":{"bibl":"periodical","media":"Online-Ressource"},"id":{"issn":["1096-0783"],"eki":["267326831"],"zdb":["1469633-2"]},"title":[{"title":"Journal of functional analysis","title_sort":"Journal of functional analysis"}],"origin":[{"dateIssuedDisp":"1967-","publisher":"Elsevier ; Academic Press","dateIssuedKey":"1967","publisherPlace":"Amsterdam [u.a.] ; New York, NY [u.a]"}]}]} | ||
| SRT | |a RUELANDANGONTHEFRACT7201 | ||