Lipschitz stability for the finite dimensional fractional Calderón problem with finite cauchy data

In this note we discuss the conditional stability issue for the finite dimensional Calder\'on problem for the fractional Schr\"{o}dinger equation with a finite number of measurements. More precisely, we assume that the unknown potential

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Rüland, Angkana (VerfasserIn) , Sincich, Eva (VerfasserIn)
Dokumenttyp: Article (Journal) Kapitel/Artikel
Sprache:Englisch
Veröffentlicht: 2 May 2018
In: Arxiv
Year: 2018, Pages: 1-19
Online-Zugang:Verlag, lizenzpflichtig, Volltext: http://arxiv.org/abs/1805.00866
Volltext
Verfasserangaben:Angkana Rüland and Eva Sincich

MARC

LEADER 00000caa a2200000 c 4500
001 1757757481
003 DE-627
005 20220819204441.0
007 cr uuu---uuuuu
008 210512s2018 xx |||||o 00| ||eng c
035 |a (DE-627)1757757481 
035 |a (DE-599)KXP1757757481 
035 |a (OCoLC)1341409066 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 27  |2 sdnb 
100 1 |a Rüland, Angkana  |d 1987-  |e VerfasserIn  |0 (DE-588)1051987679  |0 (DE-627)787342378  |0 (DE-576)407655506  |4 aut 
245 1 0 |a Lipschitz stability for the finite dimensional fractional Calderón problem with finite cauchy data  |c Angkana Rüland and Eva Sincich 
264 1 |c 2 May 2018 
300 |a 19 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 12.05.2021 
520 |a In this note we discuss the conditional stability issue for the finite dimensional Calder\'on problem for the fractional Schr\"{o}dinger equation with a finite number of measurements. More precisely, we assume that the unknown potential  |q \in L^{\infty}(\Omega) $ in the equation $((-\Delta)^s+ q)u = 0 \mbox{ in } \Omega\subset \mathbb{R}^n$ satisfies the a priori assumption that it is contained in a finite dimensional subspace of $L^{\infty}(\Omega)$. Under this condition we prove Lipschitz stability estimates for the fractional Calder\'on problem by means of finitely many Cauchy data depending on $q$. We allow for the possibility of zero being a Dirichlet eigenvalue of the associated fractional Schr\"odinger equation. Our result relies on the strong Runge approximation property of the fractional Schr\"odinger equation. 
650 4 |a Mathematics - Analysis of PDEs 
700 1 |a Sincich, Eva  |d 1976-  |e VerfasserIn  |0 (DE-588)1233398334  |0 (DE-627)1757754490  |4 aut 
773 0 8 |i Enthalten in  |t Arxiv  |d Ithaca, NY : Cornell University, 1991  |g (2018), Artikel-ID 1805.00866, Seite 1-19  |h Online-Ressource  |w (DE-627)509006531  |w (DE-600)2225896-6  |w (DE-576)28130436X  |7 nnas  |a Lipschitz stability for the finite dimensional fractional Calderón problem with finite cauchy data 
773 1 8 |g year:2018  |g elocationid:1805.00866  |g pages:1-19  |g extent:19  |a Lipschitz stability for the finite dimensional fractional Calderón problem with finite cauchy data 
856 4 0 |u http://arxiv.org/abs/1805.00866  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20210512 
993 |a Article 
994 |a 2018 
998 |g 1051987679  |a Rüland, Angkana  |m 1051987679:Rüland, Angkana  |p 1  |x j 
999 |a KXP-PPN1757757481  |e 3927738190 
BIB |a Y 
JSO |a {"physDesc":[{"extent":"19 S."}],"relHost":[{"language":["eng"],"recId":"509006531","disp":"Lipschitz stability for the finite dimensional fractional Calderón problem with finite cauchy dataArxiv","note":["Gesehen am 28.05.2024"],"type":{"media":"Online-Ressource","bibl":"edited-book"},"titleAlt":[{"title":"Arxiv.org"},{"title":"Arxiv.org e-print archive"},{"title":"Arxiv e-print archive"},{"title":"De.arxiv.org"}],"part":{"extent":"19","text":"(2018), Artikel-ID 1805.00866, Seite 1-19","pages":"1-19","year":"2018"},"pubHistory":["1991 -"],"title":[{"title":"Arxiv","title_sort":"Arxiv"}],"physDesc":[{"extent":"Online-Ressource"}],"id":{"zdb":["2225896-6"],"eki":["509006531"]},"origin":[{"dateIssuedKey":"1991","publisher":"Cornell University ; Arxiv.org","dateIssuedDisp":"1991-","publisherPlace":"Ithaca, NY ; [Erscheinungsort nicht ermittelbar]"}]}],"origin":[{"dateIssuedKey":"2018","dateIssuedDisp":"2 May 2018"}],"id":{"eki":["1757757481"]},"name":{"displayForm":["Angkana Rüland and Eva Sincich"]},"note":["Gesehen am 12.05.2021"],"type":{"bibl":"chapter","media":"Online-Ressource"},"language":["eng"],"recId":"1757757481","title":[{"title_sort":"Lipschitz stability for the finite dimensional fractional Calderón problem with finite cauchy data","title":"Lipschitz stability for the finite dimensional fractional Calderón problem with finite cauchy data"}],"person":[{"role":"aut","display":"Rüland, Angkana","roleDisplay":"VerfasserIn","given":"Angkana","family":"Rüland"},{"role":"aut","roleDisplay":"VerfasserIn","display":"Sincich, Eva","given":"Eva","family":"Sincich"}]} 
SRT |a RUELANDANGLIPSCHITZS2201