Lipschitz stability for the finite dimensional fractional Calderón problem with finite cauchy data
In this note we discuss the conditional stability issue for the finite dimensional Calder\'on problem for the fractional Schr\"{o}dinger equation with a finite number of measurements. More precisely, we assume that the unknown potential
Gespeichert in:
| Hauptverfasser: | , |
|---|---|
| Dokumenttyp: | Article (Journal) Kapitel/Artikel |
| Sprache: | Englisch |
| Veröffentlicht: |
2 May 2018
|
| In: |
Arxiv
Year: 2018, Pages: 1-19 |
| Online-Zugang: | Verlag, lizenzpflichtig, Volltext: http://arxiv.org/abs/1805.00866 |
| Verfasserangaben: | Angkana Rüland and Eva Sincich |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1757757481 | ||
| 003 | DE-627 | ||
| 005 | 20220819204441.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 210512s2018 xx |||||o 00| ||eng c | ||
| 035 | |a (DE-627)1757757481 | ||
| 035 | |a (DE-599)KXP1757757481 | ||
| 035 | |a (OCoLC)1341409066 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 27 |2 sdnb | ||
| 100 | 1 | |a Rüland, Angkana |d 1987- |e VerfasserIn |0 (DE-588)1051987679 |0 (DE-627)787342378 |0 (DE-576)407655506 |4 aut | |
| 245 | 1 | 0 | |a Lipschitz stability for the finite dimensional fractional Calderón problem with finite cauchy data |c Angkana Rüland and Eva Sincich |
| 264 | 1 | |c 2 May 2018 | |
| 300 | |a 19 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Gesehen am 12.05.2021 | ||
| 520 | |a In this note we discuss the conditional stability issue for the finite dimensional Calder\'on problem for the fractional Schr\"{o}dinger equation with a finite number of measurements. More precisely, we assume that the unknown potential |q \in L^{\infty}(\Omega) $ in the equation $((-\Delta)^s+ q)u = 0 \mbox{ in } \Omega\subset \mathbb{R}^n$ satisfies the a priori assumption that it is contained in a finite dimensional subspace of $L^{\infty}(\Omega)$. Under this condition we prove Lipschitz stability estimates for the fractional Calder\'on problem by means of finitely many Cauchy data depending on $q$. We allow for the possibility of zero being a Dirichlet eigenvalue of the associated fractional Schr\"odinger equation. Our result relies on the strong Runge approximation property of the fractional Schr\"odinger equation. | ||
| 650 | 4 | |a Mathematics - Analysis of PDEs | |
| 700 | 1 | |a Sincich, Eva |d 1976- |e VerfasserIn |0 (DE-588)1233398334 |0 (DE-627)1757754490 |4 aut | |
| 773 | 0 | 8 | |i Enthalten in |t Arxiv |d Ithaca, NY : Cornell University, 1991 |g (2018), Artikel-ID 1805.00866, Seite 1-19 |h Online-Ressource |w (DE-627)509006531 |w (DE-600)2225896-6 |w (DE-576)28130436X |7 nnas |a Lipschitz stability for the finite dimensional fractional Calderón problem with finite cauchy data |
| 773 | 1 | 8 | |g year:2018 |g elocationid:1805.00866 |g pages:1-19 |g extent:19 |a Lipschitz stability for the finite dimensional fractional Calderón problem with finite cauchy data |
| 856 | 4 | 0 | |u http://arxiv.org/abs/1805.00866 |x Verlag |z lizenzpflichtig |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20210512 | ||
| 993 | |a Article | ||
| 994 | |a 2018 | ||
| 998 | |g 1051987679 |a Rüland, Angkana |m 1051987679:Rüland, Angkana |p 1 |x j | ||
| 999 | |a KXP-PPN1757757481 |e 3927738190 | ||
| BIB | |a Y | ||
| JSO | |a {"physDesc":[{"extent":"19 S."}],"relHost":[{"language":["eng"],"recId":"509006531","disp":"Lipschitz stability for the finite dimensional fractional Calderón problem with finite cauchy dataArxiv","note":["Gesehen am 28.05.2024"],"type":{"media":"Online-Ressource","bibl":"edited-book"},"titleAlt":[{"title":"Arxiv.org"},{"title":"Arxiv.org e-print archive"},{"title":"Arxiv e-print archive"},{"title":"De.arxiv.org"}],"part":{"extent":"19","text":"(2018), Artikel-ID 1805.00866, Seite 1-19","pages":"1-19","year":"2018"},"pubHistory":["1991 -"],"title":[{"title":"Arxiv","title_sort":"Arxiv"}],"physDesc":[{"extent":"Online-Ressource"}],"id":{"zdb":["2225896-6"],"eki":["509006531"]},"origin":[{"dateIssuedKey":"1991","publisher":"Cornell University ; Arxiv.org","dateIssuedDisp":"1991-","publisherPlace":"Ithaca, NY ; [Erscheinungsort nicht ermittelbar]"}]}],"origin":[{"dateIssuedKey":"2018","dateIssuedDisp":"2 May 2018"}],"id":{"eki":["1757757481"]},"name":{"displayForm":["Angkana Rüland and Eva Sincich"]},"note":["Gesehen am 12.05.2021"],"type":{"bibl":"chapter","media":"Online-Ressource"},"language":["eng"],"recId":"1757757481","title":[{"title_sort":"Lipschitz stability for the finite dimensional fractional Calderón problem with finite cauchy data","title":"Lipschitz stability for the finite dimensional fractional Calderón problem with finite cauchy data"}],"person":[{"role":"aut","display":"Rüland, Angkana","roleDisplay":"VerfasserIn","given":"Angkana","family":"Rüland"},{"role":"aut","roleDisplay":"VerfasserIn","display":"Sincich, Eva","given":"Eva","family":"Sincich"}]} | ||
| SRT | |a RUELANDANGLIPSCHITZS2201 | ||