Lipschitz stability for the finite dimensional fractional Calderón problem with finite Cauchy data
<p style='text-indent:20px;'>In this note we discuss the conditional stability issue for the finite dimensional Calderón problem for the fractional Schrödinger equation with a finite number of measurements. More precisely, we assume that the unknown potential <inline-formula>...
Saved in:
| Main Authors: | , |
|---|---|
| Format: | Article (Journal) |
| Language: | English |
| Published: |
2019
|
| In: |
Inverse problems and imaging
Year: 2019, Volume: 13, Issue: 5, Pages: 1023-1044 |
| ISSN: | 1930-8345 |
| DOI: | 10.3934/ipi.2019046 |
| Online Access: | Verlag, lizenzpflichtig, Volltext: https://doi.org/10.3934/ipi.2019046 Verlag, lizenzpflichtig, Volltext: https://www.aimsciences.org/article/doi/10.3934/ipi.2019046 |
| Author Notes: | Angkana Rüland, Eva Sincich |
| Summary: | <p style='text-indent:20px;'>In this note we discuss the conditional stability issue for the finite dimensional Calderón problem for the fractional Schrödinger equation with a finite number of measurements. More precisely, we assume that the unknown potential <inline-formula><tex-math id="M1">\begin{document}$ q \in L^{\infty}(\Omega) $\end{document}</tex-math></inline-formula> in the equation <inline-formula><tex-math id="M2">\begin{document}$ ((- \Delta)^s+ q)u = 0 \mbox{ in } \Omega\subset \mathbb{R}^n $\end{document}</tex-math></inline-formula> satisfies the a priori assumption that it is contained in a finite dimensional subspace of <inline-formula><tex-math id="M3">\begin{document}$ L^{\infty}(\Omega) $\end{document}</tex-math></inline-formula>. Under this condition we prove Lipschitz stability estimates for the fractional Calderón problem by means of finitely many Cauchy data depending on <inline-formula><tex-math id="M4">\begin{document}$ q $\end{document}</tex-math></inline-formula>. We allow for the possibility of zero being a Dirichlet eigenvalue of the associated fractional Schrödinger equation. Our result relies on the strong Runge approximation property of the fractional Schrödinger equation.</p> |
|---|---|
| Item Description: | Gesehen am 12.05.2021 |
| Physical Description: | Online Resource |
| ISSN: | 1930-8345 |
| DOI: | 10.3934/ipi.2019046 |