Lipschitz stability for the finite dimensional fractional Calderón problem with finite Cauchy data

<p style='text-indent:20px;'>In this note we discuss the conditional stability issue for the finite dimensional Calderón problem for the fractional Schrödinger equation with a finite number of measurements. More precisely, we assume that the unknown potential <inline-formula>...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Rüland, Angkana (VerfasserIn) , Sincich, Eva (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 2019
In: Inverse problems and imaging
Year: 2019, Jahrgang: 13, Heft: 5, Pages: 1023-1044
ISSN:1930-8345
DOI:10.3934/ipi.2019046
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.3934/ipi.2019046
Verlag, lizenzpflichtig, Volltext: https://www.aimsciences.org/article/doi/10.3934/ipi.2019046
Volltext
Verfasserangaben:Angkana Rüland, Eva Sincich

MARC

LEADER 00000caa a2200000 c 4500
001 1757757678
003 DE-627
005 20220819204448.0
007 cr uuu---uuuuu
008 210512s2019 xx |||||o 00| ||eng c
024 7 |a 10.3934/ipi.2019046  |2 doi 
035 |a (DE-627)1757757678 
035 |a (DE-599)KXP1757757678 
035 |a (OCoLC)1341408567 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 27  |2 sdnb 
100 1 |a Rüland, Angkana  |d 1987-  |e VerfasserIn  |0 (DE-588)1051987679  |0 (DE-627)787342378  |0 (DE-576)407655506  |4 aut 
245 1 0 |a Lipschitz stability for the finite dimensional fractional Calderón problem with finite Cauchy data  |c Angkana Rüland, Eva Sincich 
264 1 |c 2019 
300 |a 22 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 12.05.2021 
520 |a <p style='text-indent:20px;'>In this note we discuss the conditional stability issue for the finite dimensional Calderón problem for the fractional Schrödinger equation with a finite number of measurements. More precisely, we assume that the unknown potential <inline-formula><tex-math id="M1">\begin{document}$ q \in L^{\infty}(\Omega) $\end{document}</tex-math></inline-formula> in the equation <inline-formula><tex-math id="M2">\begin{document}$ ((- \Delta)^s+ q)u = 0 \mbox{ in } \Omega\subset \mathbb{R}^n $\end{document}</tex-math></inline-formula> satisfies the a priori assumption that it is contained in a finite dimensional subspace of <inline-formula><tex-math id="M3">\begin{document}$ L^{\infty}(\Omega) $\end{document}</tex-math></inline-formula>. Under this condition we prove Lipschitz stability estimates for the fractional Calderón problem by means of finitely many Cauchy data depending on <inline-formula><tex-math id="M4">\begin{document}$ q $\end{document}</tex-math></inline-formula>. We allow for the possibility of zero being a Dirichlet eigenvalue of the associated fractional Schrödinger equation. Our result relies on the strong Runge approximation property of the fractional Schrödinger equation.</p> 
700 1 |a Sincich, Eva  |d 1976-  |e VerfasserIn  |0 (DE-588)1233398334  |0 (DE-627)1757754490  |4 aut 
773 0 8 |i Enthalten in  |t Inverse problems and imaging  |d Springfield, Mo. : AIMS, 2007  |g 13(2019), 5 vom: Okt., Seite 1023-1044  |h Online-Ressource  |w (DE-627)529764466  |w (DE-600)2304184-5  |w (DE-576)367397722  |x 1930-8345  |7 nnas  |a Lipschitz stability for the finite dimensional fractional Calderón problem with finite Cauchy data 
773 1 8 |g volume:13  |g year:2019  |g number:5  |g month:10  |g pages:1023-1044  |g extent:22  |a Lipschitz stability for the finite dimensional fractional Calderón problem with finite Cauchy data 
856 4 0 |u https://doi.org/10.3934/ipi.2019046  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u https://www.aimsciences.org/article/doi/10.3934/ipi.2019046  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20210512 
993 |a Article 
994 |a 2019 
998 |g 1051987679  |a Rüland, Angkana  |m 1051987679:Rüland, Angkana  |p 1  |x j 
999 |a KXP-PPN1757757678  |e 3927738573 
BIB |a Y 
SER |a journal 
JSO |a {"physDesc":[{"extent":"22 S."}],"relHost":[{"id":{"eki":["529764466"],"zdb":["2304184-5"],"issn":["1930-8345"]},"origin":[{"publisherPlace":"Springfield, Mo.","publisher":"AIMS","dateIssuedKey":"2007","dateIssuedDisp":"2007-"}],"physDesc":[{"extent":"Online-Ressource"}],"title":[{"title_sort":"Inverse problems and imaging","subtitle":"IPI","title":"Inverse problems and imaging"}],"titleAlt":[{"title":"IPI"}],"part":{"issue":"5","pages":"1023-1044","year":"2019","extent":"22","text":"13(2019), 5 vom: Okt., Seite 1023-1044","volume":"13"},"pubHistory":["1.2007 -"],"language":["eng"],"corporate":[{"roleDisplay":"Herausgebendes Organ","display":"American Institute of Mathematical Sciences","role":"isb"}],"recId":"529764466","disp":"Lipschitz stability for the finite dimensional fractional Calderón problem with finite Cauchy dataInverse problems and imaging","note":["Fortsetzung der Druck-Ausgabe","Gesehen am 25.06.24"],"type":{"bibl":"periodical","media":"Online-Ressource"}}],"origin":[{"dateIssuedKey":"2019","dateIssuedDisp":"2019"}],"id":{"doi":["10.3934/ipi.2019046"],"eki":["1757757678"]},"name":{"displayForm":["Angkana Rüland, Eva Sincich"]},"note":["Gesehen am 12.05.2021"],"type":{"media":"Online-Ressource","bibl":"article-journal"},"recId":"1757757678","language":["eng"],"title":[{"title_sort":"Lipschitz stability for the finite dimensional fractional Calderón problem with finite Cauchy data","title":"Lipschitz stability for the finite dimensional fractional Calderón problem with finite Cauchy data"}],"person":[{"family":"Rüland","given":"Angkana","display":"Rüland, Angkana","roleDisplay":"VerfasserIn","role":"aut"},{"role":"aut","roleDisplay":"VerfasserIn","display":"Sincich, Eva","given":"Eva","family":"Sincich"}]} 
SRT |a RUELANDANGLIPSCHITZS2019