Lipschitz stability for the finite dimensional fractional Calderón problem with finite Cauchy data
<p style='text-indent:20px;'>In this note we discuss the conditional stability issue for the finite dimensional Calderón problem for the fractional Schrödinger equation with a finite number of measurements. More precisely, we assume that the unknown potential <inline-formula>...
Gespeichert in:
| Hauptverfasser: | , |
|---|---|
| Dokumenttyp: | Article (Journal) |
| Sprache: | Englisch |
| Veröffentlicht: |
2019
|
| In: |
Inverse problems and imaging
Year: 2019, Jahrgang: 13, Heft: 5, Pages: 1023-1044 |
| ISSN: | 1930-8345 |
| DOI: | 10.3934/ipi.2019046 |
| Online-Zugang: | Verlag, lizenzpflichtig, Volltext: https://doi.org/10.3934/ipi.2019046 Verlag, lizenzpflichtig, Volltext: https://www.aimsciences.org/article/doi/10.3934/ipi.2019046 |
| Verfasserangaben: | Angkana Rüland, Eva Sincich |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1757757678 | ||
| 003 | DE-627 | ||
| 005 | 20220819204448.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 210512s2019 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.3934/ipi.2019046 |2 doi | |
| 035 | |a (DE-627)1757757678 | ||
| 035 | |a (DE-599)KXP1757757678 | ||
| 035 | |a (OCoLC)1341408567 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 27 |2 sdnb | ||
| 100 | 1 | |a Rüland, Angkana |d 1987- |e VerfasserIn |0 (DE-588)1051987679 |0 (DE-627)787342378 |0 (DE-576)407655506 |4 aut | |
| 245 | 1 | 0 | |a Lipschitz stability for the finite dimensional fractional Calderón problem with finite Cauchy data |c Angkana Rüland, Eva Sincich |
| 264 | 1 | |c 2019 | |
| 300 | |a 22 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Gesehen am 12.05.2021 | ||
| 520 | |a <p style='text-indent:20px;'>In this note we discuss the conditional stability issue for the finite dimensional Calderón problem for the fractional Schrödinger equation with a finite number of measurements. More precisely, we assume that the unknown potential <inline-formula><tex-math id="M1">\begin{document}$ q \in L^{\infty}(\Omega) $\end{document}</tex-math></inline-formula> in the equation <inline-formula><tex-math id="M2">\begin{document}$ ((- \Delta)^s+ q)u = 0 \mbox{ in } \Omega\subset \mathbb{R}^n $\end{document}</tex-math></inline-formula> satisfies the a priori assumption that it is contained in a finite dimensional subspace of <inline-formula><tex-math id="M3">\begin{document}$ L^{\infty}(\Omega) $\end{document}</tex-math></inline-formula>. Under this condition we prove Lipschitz stability estimates for the fractional Calderón problem by means of finitely many Cauchy data depending on <inline-formula><tex-math id="M4">\begin{document}$ q $\end{document}</tex-math></inline-formula>. We allow for the possibility of zero being a Dirichlet eigenvalue of the associated fractional Schrödinger equation. Our result relies on the strong Runge approximation property of the fractional Schrödinger equation.</p> | ||
| 700 | 1 | |a Sincich, Eva |d 1976- |e VerfasserIn |0 (DE-588)1233398334 |0 (DE-627)1757754490 |4 aut | |
| 773 | 0 | 8 | |i Enthalten in |t Inverse problems and imaging |d Springfield, Mo. : AIMS, 2007 |g 13(2019), 5 vom: Okt., Seite 1023-1044 |h Online-Ressource |w (DE-627)529764466 |w (DE-600)2304184-5 |w (DE-576)367397722 |x 1930-8345 |7 nnas |a Lipschitz stability for the finite dimensional fractional Calderón problem with finite Cauchy data |
| 773 | 1 | 8 | |g volume:13 |g year:2019 |g number:5 |g month:10 |g pages:1023-1044 |g extent:22 |a Lipschitz stability for the finite dimensional fractional Calderón problem with finite Cauchy data |
| 856 | 4 | 0 | |u https://doi.org/10.3934/ipi.2019046 |x Verlag |x Resolving-System |z lizenzpflichtig |3 Volltext |
| 856 | 4 | 0 | |u https://www.aimsciences.org/article/doi/10.3934/ipi.2019046 |x Verlag |z lizenzpflichtig |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20210512 | ||
| 993 | |a Article | ||
| 994 | |a 2019 | ||
| 998 | |g 1051987679 |a Rüland, Angkana |m 1051987679:Rüland, Angkana |p 1 |x j | ||
| 999 | |a KXP-PPN1757757678 |e 3927738573 | ||
| BIB | |a Y | ||
| SER | |a journal | ||
| JSO | |a {"physDesc":[{"extent":"22 S."}],"relHost":[{"id":{"eki":["529764466"],"zdb":["2304184-5"],"issn":["1930-8345"]},"origin":[{"publisherPlace":"Springfield, Mo.","publisher":"AIMS","dateIssuedKey":"2007","dateIssuedDisp":"2007-"}],"physDesc":[{"extent":"Online-Ressource"}],"title":[{"title_sort":"Inverse problems and imaging","subtitle":"IPI","title":"Inverse problems and imaging"}],"titleAlt":[{"title":"IPI"}],"part":{"issue":"5","pages":"1023-1044","year":"2019","extent":"22","text":"13(2019), 5 vom: Okt., Seite 1023-1044","volume":"13"},"pubHistory":["1.2007 -"],"language":["eng"],"corporate":[{"roleDisplay":"Herausgebendes Organ","display":"American Institute of Mathematical Sciences","role":"isb"}],"recId":"529764466","disp":"Lipschitz stability for the finite dimensional fractional Calderón problem with finite Cauchy dataInverse problems and imaging","note":["Fortsetzung der Druck-Ausgabe","Gesehen am 25.06.24"],"type":{"bibl":"periodical","media":"Online-Ressource"}}],"origin":[{"dateIssuedKey":"2019","dateIssuedDisp":"2019"}],"id":{"doi":["10.3934/ipi.2019046"],"eki":["1757757678"]},"name":{"displayForm":["Angkana Rüland, Eva Sincich"]},"note":["Gesehen am 12.05.2021"],"type":{"media":"Online-Ressource","bibl":"article-journal"},"recId":"1757757678","language":["eng"],"title":[{"title_sort":"Lipschitz stability for the finite dimensional fractional Calderón problem with finite Cauchy data","title":"Lipschitz stability for the finite dimensional fractional Calderón problem with finite Cauchy data"}],"person":[{"family":"Rüland","given":"Angkana","display":"Rüland, Angkana","roleDisplay":"VerfasserIn","role":"aut"},{"role":"aut","roleDisplay":"VerfasserIn","display":"Sincich, Eva","given":"Eva","family":"Sincich"}]} | ||
| SRT | |a RUELANDANGLIPSCHITZS2019 | ||