Deep learning for small and big data in psychiatry

Psychiatry today must gain a better understanding of the common and distinct pathophysiological mechanisms underlying psychiatric disorders in order to deliver more effective, person-tailored treatments. To this end, it appears that the analysis of ‘small’ experimental samples using conventional sta...

Full description

Saved in:
Bibliographic Details
Main Authors: Koppe, Georgia (Author) , Meyer-Lindenberg, Andreas (Author) , Durstewitz, Daniel (Author)
Format: Article (Journal)
Language:English
Published: 2021
In: Neuropsychopharmacology
Year: 2020, Volume: 46, Issue: 1, Pages: 176-190
ISSN:1740-634X
DOI:10.1038/s41386-020-0767-z
Online Access:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1038/s41386-020-0767-z
Verlag, lizenzpflichtig, Volltext: https://www.nature.com/articles/s41386-020-0767-z
Get full text
Author Notes:Georgia Koppe, Andreas Meyer-Lindenberg and Daniel Durstewitz

MARC

LEADER 00000caa a2200000 c 4500
001 1758065729
003 DE-627
005 20220819210543.0
007 cr uuu---uuuuu
008 210518r20212020xx |||||o 00| ||eng c
024 7 |a 10.1038/s41386-020-0767-z  |2 doi 
035 |a (DE-627)1758065729 
035 |a (DE-599)KXP1758065729 
035 |a (OCoLC)1341413440 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 33  |2 sdnb 
100 1 |a Koppe, Georgia  |d 1984-  |e VerfasserIn  |0 (DE-588)1095801198  |0 (DE-627)856418498  |0 (DE-576)467814724  |4 aut 
245 1 0 |a Deep learning for small and big data in psychiatry  |c Georgia Koppe, Andreas Meyer-Lindenberg and Daniel Durstewitz 
264 1 |c 2021 
300 |a 15 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Published online: 15 July 2020 
500 |a Gesehen am 18.05.2021 
520 |a Psychiatry today must gain a better understanding of the common and distinct pathophysiological mechanisms underlying psychiatric disorders in order to deliver more effective, person-tailored treatments. To this end, it appears that the analysis of ‘small’ experimental samples using conventional statistical approaches has largely failed to capture the heterogeneity underlying psychiatric phenotypes. Modern algorithms and approaches from machine learning, particularly deep learning, provide new hope to address these issues given their outstanding prediction performance in other disciplines. The strength of deep learning algorithms is that they can implement very complicated, and in principle arbitrary predictor-response mappings efficiently. This power comes at a cost, the need for large training (and test) samples to infer the (sometimes over millions of) model parameters. This appears to be at odds with the as yet rather ‘small’ samples available in psychiatric human research to date (n < 10,000), and the ambition of predicting treatment at the single subject level (n = 1). Here, we aim at giving a comprehensive overview on how we can yet use such models for prediction in psychiatry. We review how machine learning approaches compare to more traditional statistical hypothesis-driven approaches, how their complexity relates to the need of large sample sizes, and what we can do to optimally use these powerful techniques in psychiatric neuroscience. 
534 |c 2020 
700 1 |a Meyer-Lindenberg, Andreas  |d 1965-  |e VerfasserIn  |0 (DE-588)1029137390  |0 (DE-627)732483069  |0 (DE-576)376589876  |4 aut 
700 1 |a Durstewitz, Daniel  |d 1967-  |e VerfasserIn  |0 (DE-588)12042021X  |0 (DE-627)080664008  |0 (DE-576)174757050  |4 aut 
773 0 8 |i Enthalten in  |t Neuropsychopharmacology  |d London : Springer Nature, 1993  |g 46(2021), 1, Seite 176-190  |h Online-Ressource  |w (DE-627)320469190  |w (DE-600)2008300-2  |w (DE-576)096188707  |x 1740-634X  |7 nnas  |a Deep learning for small and big data in psychiatry 
773 1 8 |g volume:46  |g year:2021  |g number:1  |g pages:176-190  |g extent:15  |a Deep learning for small and big data in psychiatry 
856 4 0 |u https://doi.org/10.1038/s41386-020-0767-z  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u https://www.nature.com/articles/s41386-020-0767-z  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20210518 
993 |a Article 
994 |a 2021 
998 |g 12042021X  |a Durstewitz, Daniel  |m 12042021X:Durstewitz, Daniel  |d 130000  |e 130000PD12042021X  |k 0/130000/  |p 3  |y j 
998 |g 1029137390  |a Meyer-Lindenberg, Andreas  |m 1029137390:Meyer-Lindenberg, Andreas  |d 60000  |e 60000PM1029137390  |k 0/60000/  |p 2 
999 |a KXP-PPN1758065729  |e 3929375583 
BIB |a Y 
SER |a journal 
JSO |a {"recId":"1758065729","id":{"eki":["1758065729"],"doi":["10.1038/s41386-020-0767-z"]},"title":[{"title_sort":"Deep learning for small and big data in psychiatry","title":"Deep learning for small and big data in psychiatry"}],"note":["Published online: 15 July 2020","Gesehen am 18.05.2021"],"origin":[{"dateIssuedKey":"2021","dateIssuedDisp":"2021"}],"type":{"bibl":"article-journal","media":"Online-Ressource"},"language":["eng"],"name":{"displayForm":["Georgia Koppe, Andreas Meyer-Lindenberg and Daniel Durstewitz"]},"person":[{"family":"Koppe","roleDisplay":"VerfasserIn","given":"Georgia","role":"aut","display":"Koppe, Georgia"},{"role":"aut","display":"Meyer-Lindenberg, Andreas","given":"Andreas","family":"Meyer-Lindenberg","roleDisplay":"VerfasserIn"},{"family":"Durstewitz","roleDisplay":"VerfasserIn","given":"Daniel","display":"Durstewitz, Daniel","role":"aut"}],"physDesc":[{"extent":"15 S."}],"relHost":[{"disp":"Deep learning for small and big data in psychiatryNeuropsychopharmacology","note":["Ungezählte Beil.: Supplement"],"id":{"zdb":["2008300-2"],"eki":["320469190"],"issn":["1740-634X"]},"title":[{"title_sort":"Neuropsychopharmacology","title":"Neuropsychopharmacology","subtitle":"official publication of the American College of Neuropsychopharmacology"}],"physDesc":[{"extent":"Online-Ressource"}],"part":{"pages":"176-190","year":"2021","extent":"15","volume":"46","issue":"1","text":"46(2021), 1, Seite 176-190"},"type":{"bibl":"periodical","media":"Online-Ressource"},"origin":[{"dateIssuedDisp":"1993-","publisherPlace":"London ; Amsterdam [u.a.] ; London","dateIssuedKey":"1993","publisher":"Springer Nature ; Elsevier Science ; Nature Publ. Group"}],"language":["eng"],"pubHistory":["Nachgewiesen 8.1993 -"],"recId":"320469190"}]} 
SRT |a KOPPEGEORGDEEPLEARNI2021