Unique continuation for sublinear elliptic equations based on Carleman estimates

In this article we deal with different forms of the unique continuation property for second order elliptic equations with nonlinear potentials of sublinear growth. Under suitable regularity assumptions, we prove the weak and the strong unique continuation property. Moreover, we also discuss the uniq...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Rüland, Angkana (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 20 July 2018
In: Journal of differential equations
Year: 2018, Jahrgang: 265, Heft: 11, Pages: 6009-6035
ISSN:1090-2732
DOI:10.1016/j.jde.2018.07.025
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1016/j.jde.2018.07.025
Verlag, lizenzpflichtig, Volltext: https://www.sciencedirect.com/science/article/pii/S0022039618303899
Volltext
Verfasserangaben:Angkana Rüland
Beschreibung
Zusammenfassung:In this article we deal with different forms of the unique continuation property for second order elliptic equations with nonlinear potentials of sublinear growth. Under suitable regularity assumptions, we prove the weak and the strong unique continuation property. Moreover, we also discuss the unique continuation property from measurable sets, which shows that nodal domains to these equations must have vanishing Lebesgue measure. Our methods rely on suitable Carleman estimates, for which we include the sublinear potential into the main part of the operator.
Beschreibung:Gesehen am 19.05.2021
Beschreibung:Online Resource
ISSN:1090-2732
DOI:10.1016/j.jde.2018.07.025