Uniqueness and reconstruction for the fractional Calderón problem with a single measurement

We show global uniqueness in the fractional Calder\'on problem with a single measurement and with data on arbitrary, possibly disjoint subsets of the exterior. The previous work \cite{GhoshSaloUhlmann} considered the case of infinitely many measurements. The method is again based on the strong...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Ghosh, Tuhin (VerfasserIn) , Rüland, Angkana (VerfasserIn) , Salo, Mikko (VerfasserIn) , Uhlmann, Gunther (VerfasserIn)
Dokumenttyp: Article (Journal) Kapitel/Artikel
Sprache:Englisch
Veröffentlicht: 13 Jan 2018
In: Arxiv
Year: 2018, Pages: 1-32
Online-Zugang:Verlag, lizenzpflichtig, Volltext: http://arxiv.org/abs/1801.04449
Volltext
Verfasserangaben:Tuhin Ghosh, Angkana Rüland, Mikko Salo, and Gunther Uhlmann
Beschreibung
Zusammenfassung:We show global uniqueness in the fractional Calder\'on problem with a single measurement and with data on arbitrary, possibly disjoint subsets of the exterior. The previous work \cite{GhoshSaloUhlmann} considered the case of infinitely many measurements. The method is again based on the strong uniqueness properties for the fractional equation, this time combined with a unique continuation principle from sets of measure zero. We also give a constructive procedure for determining an unknown potential from a single exterior measurement, based on constructive versions of the unique continuation result that involve different regularization schemes.
Beschreibung:Gesehen am 19.05.2021
Beschreibung:Online Resource