Reducing the impact of confounding factors on skin cancer classification via image segmentation: technical model study

Background: Studies have shown that artificial intelligence achieves similar or better performance than dermatologists in specific dermoscopic image classification tasks. However, artificial intelligence is susceptible to the influence of confounding factors within images (eg, skin markings), which...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Maron, Roman C. (VerfasserIn) , Hekler, Achim (VerfasserIn) , Krieghoff-Henning, Eva (VerfasserIn) , Schmitt, Max (VerfasserIn) , Schlager, Justin Gabriel (VerfasserIn) , Utikal, Jochen (VerfasserIn) , Brinker, Titus Josef (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 2021
In: Journal of medical internet research
Year: 2021, Jahrgang: 23, Heft: 3, Pages: 1-10
ISSN:1438-8871
DOI:10.2196/21695
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.2196/21695
Verlag, lizenzpflichtig, Volltext: https://www.jmir.org/2021/3/e21695
Volltext
Verfasserangaben:Roman C Maron, MSc; Achim Hekler, MSc; Eva Krieghoff-Henning, PhD; Max Schmitt, MSc; Justin G Schlager, MD; Jochen S Utikal, MD; Titus J Brinker, MD

MARC

LEADER 00000caa a2200000 c 4500
001 1758194251
003 DE-627
005 20240410073055.0
007 cr uuu---uuuuu
008 210519s2021 xx |||||o 00| ||eng c
024 7 |a 10.2196/21695  |2 doi 
035 |a (DE-627)1758194251 
035 |a (DE-599)KXP1758194251 
035 |a (OCoLC)1341413528 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 33  |2 sdnb 
100 1 |a Maron, Roman C.  |e VerfasserIn  |0 (DE-588)1198959851  |0 (DE-627)1681173867  |4 aut 
245 1 0 |a Reducing the impact of confounding factors on skin cancer classification via image segmentation  |b technical model study  |c Roman C Maron, MSc; Achim Hekler, MSc; Eva Krieghoff-Henning, PhD; Max Schmitt, MSc; Justin G Schlager, MD; Jochen S Utikal, MD; Titus J Brinker, MD 
264 1 |c 2021 
300 |a 10 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 19.05.2021 
500 |a First published: June 22, 2020 
520 |a Background: Studies have shown that artificial intelligence achieves similar or better performance than dermatologists in specific dermoscopic image classification tasks. However, artificial intelligence is susceptible to the influence of confounding factors within images (eg, skin markings), which can lead to false diagnoses of cancerous skin lesions. Image segmentation can remove lesion-adjacent confounding factors but greatly change the image representation. - Objective: The aim of this study was to compare the performance of 2 image classification workflows where images were either segmented or left unprocessed before the subsequent training and evaluation of a binary skin lesion classifier. - Methods: Separate binary skin lesion classifiers (nevus vs melanoma) were trained and evaluated on segmented and unsegmented dermoscopic images. For a more informative result, separate classifiers were trained on 2 distinct training data sets (human against machine [HAM] and International Skin Imaging Collaboration [ISIC]). Each training run was repeated 5 times. The mean performance of the 5 runs was evaluated on a multi-source test set (n=688) consisting of a holdout and an external component. - Results: Our findings showed that when trained on HAM, the segmented classifiers showed a higher overall balanced accuracy (75.6% [SD 1.1%]) than the unsegmented classifiers (66.7% [SD 3.2%]), which was significant in 4 out of 5 runs (P<.001). The overall balanced accuracy was numerically higher for the unsegmented ISIC classifiers (78.3% [SD 1.8%]) than for the segmented ISIC classifiers (77.4% [SD 1.5%]), which was significantly different in 1 out of 5 runs (P=.004). - Conclusions: Image segmentation does not result in overall performance decrease but it causes the beneficial removal of lesion-adjacent confounding factors. Thus, it is a viable option to address the negative impact that confounding factors have on deep learning models in dermatology. However, the segmentation step might introduce new pitfalls, which require further investigations. 
700 1 |a Hekler, Achim  |e VerfasserIn  |0 (DE-588)1196829314  |0 (DE-627)1678721344  |4 aut 
700 1 |a Krieghoff-Henning, Eva  |d 1976-  |e VerfasserIn  |0 (DE-588)132407914  |0 (DE-627)52267786X  |0 (DE-576)299126706  |4 aut 
700 1 |a Schmitt, Max  |e VerfasserIn  |0 (DE-588)1236577469  |0 (DE-627)1761961586  |4 aut 
700 1 |a Schlager, Justin Gabriel  |d 1987-  |e VerfasserIn  |0 (DE-588)1119171520  |0 (DE-627)872683915  |0 (DE-576)479749930  |4 aut 
700 1 |a Utikal, Jochen  |d 1974-  |e VerfasserIn  |0 (DE-588)1026463750  |0 (DE-627)726765015  |0 (DE-576)371816580  |4 aut 
700 1 |a Brinker, Titus Josef  |d 1990-  |e VerfasserIn  |0 (DE-588)1156309395  |0 (DE-627)1018860487  |0 (DE-576)502097434  |4 aut 
773 0 8 |i Enthalten in  |t Journal of medical internet research  |d Richmond, Va. : Healthcare World, 1999  |g 23(2021), 3, Artikel-ID e21695, Seite 1-10  |h Online-Ressource  |w (DE-627)324614136  |w (DE-600)2028830-X  |w (DE-576)281198233  |x 1438-8871  |7 nnas  |a Reducing the impact of confounding factors on skin cancer classification via image segmentation technical model study 
773 1 8 |g volume:23  |g year:2021  |g number:3  |g elocationid:e21695  |g pages:1-10  |g extent:10  |a Reducing the impact of confounding factors on skin cancer classification via image segmentation technical model study 
856 4 0 |u https://doi.org/10.2196/21695  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u https://www.jmir.org/2021/3/e21695  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20210519 
993 |a Article 
994 |a 2021 
998 |g 1156309395  |a Brinker, Titus Josef  |m 1156309395:Brinker, Titus Josef  |d 910000  |d 911300  |e 910000PB1156309395  |e 911300PB1156309395  |k 0/910000/  |k 1/910000/911300/  |p 7  |y j 
998 |g 1026463750  |a Utikal, Jochen  |m 1026463750:Utikal, Jochen  |d 60000  |e 60000PU1026463750  |k 0/60000/  |p 6 
999 |a KXP-PPN1758194251  |e 3929751208 
BIB |a Y 
SER |a journal 
JSO |a {"person":[{"given":"Roman C.","role":"aut","display":"Maron, Roman C.","family":"Maron"},{"role":"aut","given":"Achim","family":"Hekler","display":"Hekler, Achim"},{"given":"Eva","role":"aut","display":"Krieghoff-Henning, Eva","family":"Krieghoff-Henning"},{"family":"Schmitt","display":"Schmitt, Max","given":"Max","role":"aut"},{"role":"aut","given":"Justin Gabriel","display":"Schlager, Justin Gabriel","family":"Schlager"},{"role":"aut","given":"Jochen","family":"Utikal","display":"Utikal, Jochen"},{"family":"Brinker","display":"Brinker, Titus Josef","role":"aut","given":"Titus Josef"}],"type":{"bibl":"article-journal","media":"Online-Ressource"},"note":["Gesehen am 19.05.2021","First published: June 22, 2020"],"origin":[{"dateIssuedKey":"2021","dateIssuedDisp":"2021"}],"title":[{"title":"Reducing the impact of confounding factors on skin cancer classification via image segmentation","title_sort":"Reducing the impact of confounding factors on skin cancer classification via image segmentation","subtitle":"technical model study"}],"language":["eng"],"physDesc":[{"extent":"10 S."}],"name":{"displayForm":["Roman C Maron, MSc; Achim Hekler, MSc; Eva Krieghoff-Henning, PhD; Max Schmitt, MSc; Justin G Schlager, MD; Jochen S Utikal, MD; Titus J Brinker, MD"]},"recId":"1758194251","id":{"doi":["10.2196/21695"],"eki":["1758194251"]},"relHost":[{"language":["eng"],"part":{"issue":"3","volume":"23","extent":"10","text":"23(2021), 3, Artikel-ID e21695, Seite 1-10","pages":"1-10","year":"2021"},"origin":[{"publisherPlace":"Richmond, Va.","dateIssuedDisp":"1999-","dateIssuedKey":"1999","publisher":"Healthcare World"}],"title":[{"title":"Journal of medical internet research","subtitle":"international scientific journal for medical research, information and communication on the internet ; JMIR","title_sort":"Journal of medical internet research"}],"titleAlt":[{"title":"JMIR"}],"type":{"bibl":"periodical","media":"Online-Ressource"},"disp":"Reducing the impact of confounding factors on skin cancer classification via image segmentation technical model studyJournal of medical internet research","id":{"issn":["1438-8871"],"eki":["324614136"],"zdb":["2028830-X"]},"recId":"324614136","pubHistory":["1.1999 -"],"physDesc":[{"extent":"Online-Ressource"}]}]} 
SRT |a MARONROMANREDUCINGTH2021