A compactness and structure result for a discrete multi-well problem with SO(n) symmetry in arbitrary dimension

In this note we combine the “spin-argument” from Kitavtsev et al. (Proc R Soc Edinb Sect A Mater 147(5):1041-1089, 2017) and the n-dimensional incompatible, one-well rigidity result from Lauteri and Luckhaus (An energy estimate for dislocation configurations and the emergence of Cosserat-type struct...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Kitavtsev, Georgy (VerfasserIn) , Lauteri, Gianluca (VerfasserIn) , Luckhaus, Stephan (VerfasserIn) , Rüland, Angkana (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 2019
In: Archive for rational mechanics and analysis
Year: 2018, Jahrgang: 232, Heft: 1, Pages: 531-555
ISSN:1432-0673
DOI:10.1007/s00205-018-1327-0
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1007/s00205-018-1327-0
Volltext
Verfasserangaben:Georgy Kitavtsev, Gianluca Lauteri, Stephan Luckhaus & Angkana Rüland
Beschreibung
Zusammenfassung:In this note we combine the “spin-argument” from Kitavtsev et al. (Proc R Soc Edinb Sect A Mater 147(5):1041-1089, 2017) and the n-dimensional incompatible, one-well rigidity result from Lauteri and Luckhaus (An energy estimate for dislocation configurations and the emergence of Cosserat-type structures in metal plasticity, 2016), in order to infer a new proof for the compactness of discrete multi-well energies associated with the modelling of surface energies in certain phase transitions. Mathematically, a main novelty here is the reduction of the problem to an incompatible one-well problem. The presented argument is very robust and applies to a number of different physically interesting models, including for instance phase transformations in shape-memory materials but also anti-ferromagnetic transformations or related transitions with an “internal” microstructure on smaller scales.
Beschreibung:Published: 20 October 2018
Gesehen am 19.05.2021
Beschreibung:Online Resource
ISSN:1432-0673
DOI:10.1007/s00205-018-1327-0