Higher Sobolev regularity of convex integration solutions in elasticity: the planar geometrically linearized hexagonal-to-rhombic phase transformation
In this article we discuss quantitative properties of convex integration solutions arising in problems modeling shape-memory materials. For a two-dimensional, geometrically linearized model case, the hexagonal-to-rhombic phase transformation, we prove the existence of convex integration solutions $u...
Gespeichert in:
| Hauptverfasser: | , , |
|---|---|
| Dokumenttyp: | Article (Journal) |
| Sprache: | Englisch |
| Veröffentlicht: |
2020
|
| In: |
Journal of elasticity
Year: 2019, Jahrgang: 138, Heft: 1, Pages: 1-76 |
| ISSN: | 1573-2681 |
| DOI: | 10.1007/s10659-018-09719-3 |
| Online-Zugang: | Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1007/s10659-018-09719-3 |
| Verfasserangaben: | Angkana Rüland, Christian Zillinger, Barbara Zwicknagl |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1758990473 | ||
| 003 | DE-627 | ||
| 005 | 20220819214855.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 210526r20202019xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.1007/s10659-018-09719-3 |2 doi | |
| 035 | |a (DE-627)1758990473 | ||
| 035 | |a (DE-599)KXP1758990473 | ||
| 035 | |a (OCoLC)1341413844 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 27 |2 sdnb | ||
| 100 | 1 | |a Rüland, Angkana |d 1987- |e VerfasserIn |0 (DE-588)1051987679 |0 (DE-627)787342378 |0 (DE-576)407655506 |4 aut | |
| 245 | 1 | 0 | |a Higher Sobolev regularity of convex integration solutions in elasticity |b the planar geometrically linearized hexagonal-to-rhombic phase transformation |c Angkana Rüland, Christian Zillinger, Barbara Zwicknagl |
| 264 | 1 | |c 2020 | |
| 300 | |a 76 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Published: 14 January 2019 | ||
| 500 | |a Gesehen am 26.05.2021 | ||
| 520 | |a In this article we discuss quantitative properties of convex integration solutions arising in problems modeling shape-memory materials. For a two-dimensional, geometrically linearized model case, the hexagonal-to-rhombic phase transformation, we prove the existence of convex integration solutions $u$ with higher Sobolev regularity, i.e., there exists $\theta _{0}>0$ such that $\nabla u \in W^{s,p}_{loc}( \mathbb{R}^{2})\cap L^{\infty }(\mathbb{R}^{2})$ for $s\in (0,1)$, $p\in (1,\infty )$ with $0< sp < \theta _{0}$. We also recall a construction which shows that in very specific situations with additional symmetry much better regularity properties hold. | ||
| 534 | |c 2019 | ||
| 700 | 1 | |a Zillinger, Christian |d 1988- |e VerfasserIn |0 (DE-588)1030354405 |0 (DE-627)735116431 |0 (DE-576)378161326 |4 aut | |
| 700 | 1 | |a Zwicknagl, Barbara |e VerfasserIn |0 (DE-588)1233399373 |0 (DE-627)1757756906 |4 aut | |
| 773 | 0 | 8 | |i Enthalten in |t Journal of elasticity |d Dordrecht [u.a.] : Springer Science + Business Media B.V, 1971 |g 138(2020), 1, Seite 1-76 |h Online-Ressource |w (DE-627)314839038 |w (DE-600)2015283-8 |w (DE-576)121465683 |x 1573-2681 |7 nnas |a Higher Sobolev regularity of convex integration solutions in elasticity the planar geometrically linearized hexagonal-to-rhombic phase transformation |
| 773 | 1 | 8 | |g volume:138 |g year:2020 |g number:1 |g pages:1-76 |g extent:76 |a Higher Sobolev regularity of convex integration solutions in elasticity the planar geometrically linearized hexagonal-to-rhombic phase transformation |
| 856 | 4 | 0 | |u https://doi.org/10.1007/s10659-018-09719-3 |x Verlag |x Resolving-System |z lizenzpflichtig |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20210526 | ||
| 993 | |a Article | ||
| 994 | |a 2020 | ||
| 998 | |g 1051987679 |a Rüland, Angkana |m 1051987679:Rüland, Angkana |d 110000 |d 110200 |d 110000 |d 110400 |e 110000PR1051987679 |e 110200PR1051987679 |e 110000PR1051987679 |e 110400PR1051987679 |k 0/110000/ |k 1/110000/110200/ |k 0/110000/ |k 1/110000/110400/ |p 1 |x j | ||
| 999 | |a KXP-PPN1758990473 |e 3931334384 | ||
| BIB | |a Y | ||
| SER | |a journal | ||
| JSO | |a {"note":["Published: 14 January 2019","Gesehen am 26.05.2021"],"type":{"bibl":"article-journal","media":"Online-Ressource"},"recId":"1758990473","language":["eng"],"title":[{"subtitle":"the planar geometrically linearized hexagonal-to-rhombic phase transformation","title":"Higher Sobolev regularity of convex integration solutions in elasticity","title_sort":"Higher Sobolev regularity of convex integration solutions in elasticity"}],"person":[{"family":"Rüland","given":"Angkana","display":"Rüland, Angkana","roleDisplay":"VerfasserIn","role":"aut"},{"role":"aut","display":"Zillinger, Christian","roleDisplay":"VerfasserIn","given":"Christian","family":"Zillinger"},{"family":"Zwicknagl","given":"Barbara","display":"Zwicknagl, Barbara","roleDisplay":"VerfasserIn","role":"aut"}],"physDesc":[{"extent":"76 S."}],"relHost":[{"physDesc":[{"extent":"Online-Ressource"}],"origin":[{"dateIssuedDisp":"1971-","publisher":"Springer Science + Business Media B.V ; Kluwer","dateIssuedKey":"1971","publisherPlace":"Dordrecht [u.a.] ; Dordrecht [u.a.]"}],"id":{"issn":["1573-2681"],"eki":["314839038"],"zdb":["2015283-8"]},"pubHistory":["1.1971 -"],"part":{"issue":"1","pages":"1-76","year":"2020","extent":"76","volume":"138","text":"138(2020), 1, Seite 1-76"},"type":{"bibl":"periodical","media":"Online-Ressource"},"disp":"Higher Sobolev regularity of convex integration solutions in elasticity the planar geometrically linearized hexagonal-to-rhombic phase transformationJournal of elasticity","note":["Gesehen am 28.10.05"],"recId":"314839038","language":["eng"],"title":[{"title":"Journal of elasticity","title_sort":"Journal of elasticity"}]}],"origin":[{"dateIssuedKey":"2020","dateIssuedDisp":"2020"}],"id":{"doi":["10.1007/s10659-018-09719-3"],"eki":["1758990473"]},"name":{"displayForm":["Angkana Rüland, Christian Zillinger, Barbara Zwicknagl"]}} | ||
| SRT | |a RUELANDANGHIGHERSOBO2020 | ||