Higher Sobolev regularity of convex integration solutions in elasticity: the planar geometrically linearized hexagonal-to-rhombic phase transformation

In this article we discuss quantitative properties of convex integration solutions arising in problems modeling shape-memory materials. For a two-dimensional, geometrically linearized model case, the hexagonal-to-rhombic phase transformation, we prove the existence of convex integration solutions $u...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Rüland, Angkana (VerfasserIn) , Zillinger, Christian (VerfasserIn) , Zwicknagl, Barbara (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 2020
In: Journal of elasticity
Year: 2019, Jahrgang: 138, Heft: 1, Pages: 1-76
ISSN:1573-2681
DOI:10.1007/s10659-018-09719-3
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1007/s10659-018-09719-3
Volltext
Verfasserangaben:Angkana Rüland, Christian Zillinger, Barbara Zwicknagl

MARC

LEADER 00000caa a2200000 c 4500
001 1758990473
003 DE-627
005 20220819214855.0
007 cr uuu---uuuuu
008 210526r20202019xx |||||o 00| ||eng c
024 7 |a 10.1007/s10659-018-09719-3  |2 doi 
035 |a (DE-627)1758990473 
035 |a (DE-599)KXP1758990473 
035 |a (OCoLC)1341413844 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 27  |2 sdnb 
100 1 |a Rüland, Angkana  |d 1987-  |e VerfasserIn  |0 (DE-588)1051987679  |0 (DE-627)787342378  |0 (DE-576)407655506  |4 aut 
245 1 0 |a Higher Sobolev regularity of convex integration solutions in elasticity  |b the planar geometrically linearized hexagonal-to-rhombic phase transformation  |c Angkana Rüland, Christian Zillinger, Barbara Zwicknagl 
264 1 |c 2020 
300 |a 76 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Published: 14 January 2019 
500 |a Gesehen am 26.05.2021 
520 |a In this article we discuss quantitative properties of convex integration solutions arising in problems modeling shape-memory materials. For a two-dimensional, geometrically linearized model case, the hexagonal-to-rhombic phase transformation, we prove the existence of convex integration solutions $u$ with higher Sobolev regularity, i.e., there exists $\theta _{0}>0$ such that $\nabla u \in W^{s,p}_{loc}( \mathbb{R}^{2})\cap L^{\infty }(\mathbb{R}^{2})$ for $s\in (0,1)$, $p\in (1,\infty )$ with $0< sp < \theta _{0}$. We also recall a construction which shows that in very specific situations with additional symmetry much better regularity properties hold. 
534 |c 2019 
700 1 |a Zillinger, Christian  |d 1988-  |e VerfasserIn  |0 (DE-588)1030354405  |0 (DE-627)735116431  |0 (DE-576)378161326  |4 aut 
700 1 |a Zwicknagl, Barbara  |e VerfasserIn  |0 (DE-588)1233399373  |0 (DE-627)1757756906  |4 aut 
773 0 8 |i Enthalten in  |t Journal of elasticity  |d Dordrecht [u.a.] : Springer Science + Business Media B.V, 1971  |g 138(2020), 1, Seite 1-76  |h Online-Ressource  |w (DE-627)314839038  |w (DE-600)2015283-8  |w (DE-576)121465683  |x 1573-2681  |7 nnas  |a Higher Sobolev regularity of convex integration solutions in elasticity the planar geometrically linearized hexagonal-to-rhombic phase transformation 
773 1 8 |g volume:138  |g year:2020  |g number:1  |g pages:1-76  |g extent:76  |a Higher Sobolev regularity of convex integration solutions in elasticity the planar geometrically linearized hexagonal-to-rhombic phase transformation 
856 4 0 |u https://doi.org/10.1007/s10659-018-09719-3  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20210526 
993 |a Article 
994 |a 2020 
998 |g 1051987679  |a Rüland, Angkana  |m 1051987679:Rüland, Angkana  |d 110000  |d 110200  |d 110000  |d 110400  |e 110000PR1051987679  |e 110200PR1051987679  |e 110000PR1051987679  |e 110400PR1051987679  |k 0/110000/  |k 1/110000/110200/  |k 0/110000/  |k 1/110000/110400/  |p 1  |x j 
999 |a KXP-PPN1758990473  |e 3931334384 
BIB |a Y 
SER |a journal 
JSO |a {"note":["Published: 14 January 2019","Gesehen am 26.05.2021"],"type":{"bibl":"article-journal","media":"Online-Ressource"},"recId":"1758990473","language":["eng"],"title":[{"subtitle":"the planar geometrically linearized hexagonal-to-rhombic phase transformation","title":"Higher Sobolev regularity of convex integration solutions in elasticity","title_sort":"Higher Sobolev regularity of convex integration solutions in elasticity"}],"person":[{"family":"Rüland","given":"Angkana","display":"Rüland, Angkana","roleDisplay":"VerfasserIn","role":"aut"},{"role":"aut","display":"Zillinger, Christian","roleDisplay":"VerfasserIn","given":"Christian","family":"Zillinger"},{"family":"Zwicknagl","given":"Barbara","display":"Zwicknagl, Barbara","roleDisplay":"VerfasserIn","role":"aut"}],"physDesc":[{"extent":"76 S."}],"relHost":[{"physDesc":[{"extent":"Online-Ressource"}],"origin":[{"dateIssuedDisp":"1971-","publisher":"Springer Science + Business Media B.V ; Kluwer","dateIssuedKey":"1971","publisherPlace":"Dordrecht [u.a.] ; Dordrecht [u.a.]"}],"id":{"issn":["1573-2681"],"eki":["314839038"],"zdb":["2015283-8"]},"pubHistory":["1.1971 -"],"part":{"issue":"1","pages":"1-76","year":"2020","extent":"76","volume":"138","text":"138(2020), 1, Seite 1-76"},"type":{"bibl":"periodical","media":"Online-Ressource"},"disp":"Higher Sobolev regularity of convex integration solutions in elasticity the planar geometrically linearized hexagonal-to-rhombic phase transformationJournal of elasticity","note":["Gesehen am 28.10.05"],"recId":"314839038","language":["eng"],"title":[{"title":"Journal of elasticity","title_sort":"Journal of elasticity"}]}],"origin":[{"dateIssuedKey":"2020","dateIssuedDisp":"2020"}],"id":{"doi":["10.1007/s10659-018-09719-3"],"eki":["1758990473"]},"name":{"displayForm":["Angkana Rüland, Christian Zillinger, Barbara Zwicknagl"]}} 
SRT |a RUELANDANGHIGHERSOBO2020