Quantitative Runge approximation and inverse problems
In this short note, we provide a quantitative version of the classical Runge approximation property for second-order elliptic operators. This relies on quantitative unique continuation results and duality arguments. We show that these estimates are essentially optimal. As a model application, we pro...
Gespeichert in:
| Hauptverfasser: | , |
|---|---|
| Dokumenttyp: | Article (Journal) |
| Sprache: | Englisch |
| Veröffentlicht: |
2019
|
| In: |
International mathematics research notices
Year: 2018, Heft: 20, Pages: 6216-6234 |
| ISSN: | 1687-0247 |
| DOI: | 10.1093/imrn/rnx301 |
| Online-Zugang: | Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1093/imrn/rnx301 |
| Verfasserangaben: | Angkana Rüland and Mikko Salo |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 175899066X | ||
| 003 | DE-627 | ||
| 005 | 20220819214916.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 210526r20192018xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.1093/imrn/rnx301 |2 doi | |
| 035 | |a (DE-627)175899066X | ||
| 035 | |a (DE-599)KXP175899066X | ||
| 035 | |a (OCoLC)1341414609 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 27 |2 sdnb | ||
| 100 | 1 | |a Rüland, Angkana |d 1987- |e VerfasserIn |0 (DE-588)1051987679 |0 (DE-627)787342378 |0 (DE-576)407655506 |4 aut | |
| 245 | 1 | 0 | |a Quantitative Runge approximation and inverse problems |c Angkana Rüland and Mikko Salo |
| 264 | 1 | |c 2019 | |
| 300 | |a 19 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Published: 19 January 2018 | ||
| 500 | |a Gesehen am 26.05.2021 | ||
| 520 | |a In this short note, we provide a quantitative version of the classical Runge approximation property for second-order elliptic operators. This relies on quantitative unique continuation results and duality arguments. We show that these estimates are essentially optimal. As a model application, we provide a new proof of the result from [8], [2] on stability for the Calderón problem with local data. | ||
| 534 | |c 2018 | ||
| 700 | 1 | |a Salo, Mikko |d 1979- |e VerfasserIn |0 (DE-588)173729959 |0 (DE-627)698635841 |0 (DE-576)134570995 |4 aut | |
| 773 | 0 | 8 | |i Enthalten in |t International mathematics research notices |d Oxford : Oxford University Press, 1991 |g (2019), 20 vom: Okt., Seite 6216-6234 |h Online-Ressource |w (DE-627)265549639 |w (DE-600)1465368-0 |w (DE-576)254482201 |x 1687-0247 |7 nnas |a Quantitative Runge approximation and inverse problems |
| 773 | 1 | 8 | |g year:2019 |g number:20 |g month:10 |g pages:6216-6234 |g extent:19 |a Quantitative Runge approximation and inverse problems |
| 856 | 4 | 0 | |u https://doi.org/10.1093/imrn/rnx301 |x Verlag |x Resolving-System |z lizenzpflichtig |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20210526 | ||
| 993 | |a Article | ||
| 994 | |a 2019 | ||
| 998 | |g 1051987679 |a Rüland, Angkana |m 1051987679:Rüland, Angkana |p 1 |x j | ||
| 999 | |a KXP-PPN175899066X |e 3931334759 | ||
| BIB | |a Y | ||
| SER | |a journal | ||
| JSO | |a {"physDesc":[{"extent":"19 S."}],"relHost":[{"name":{"displayForm":["Duke University"]},"origin":[{"dateIssuedKey":"1991","publisher":"Oxford University Press ; Duke Univ. Press ; Hindawi Publ. Corp.","dateIssuedDisp":"1991-","publisherPlace":"Oxford ; Durham, NC ; New York, NY [u.a.]"}],"id":{"issn":["1687-0247"],"eki":["265549639"],"zdb":["1465368-0"]},"physDesc":[{"extent":"Online-Ressource"}],"title":[{"title":"International mathematics research notices","subtitle":"IMRN","title_sort":"International mathematics research notices"}],"disp":"Quantitative Runge approximation and inverse problemsInternational mathematics research notices","type":{"media":"Online-Ressource","bibl":"periodical"},"note":["Gesehen am 29.01.2025"],"recId":"265549639","corporate":[{"role":"isb","display":"Duke University","roleDisplay":"Herausgebendes Organ"}],"language":["eng"],"pubHistory":["1991 -"],"titleAlt":[{"title":"IMRN"}],"part":{"text":"(2019), 20 vom: Okt., Seite 6216-6234","extent":"19","year":"2019","pages":"6216-6234","issue":"20"}}],"name":{"displayForm":["Angkana Rüland and Mikko Salo"]},"origin":[{"dateIssuedKey":"2019","dateIssuedDisp":"2019"}],"id":{"eki":["175899066X"],"doi":["10.1093/imrn/rnx301"]},"type":{"bibl":"article-journal","media":"Online-Ressource"},"note":["Published: 19 January 2018","Gesehen am 26.05.2021"],"recId":"175899066X","language":["eng"],"person":[{"given":"Angkana","family":"Rüland","role":"aut","display":"Rüland, Angkana","roleDisplay":"VerfasserIn"},{"roleDisplay":"VerfasserIn","display":"Salo, Mikko","role":"aut","family":"Salo","given":"Mikko"}],"title":[{"title":"Quantitative Runge approximation and inverse problems","title_sort":"Quantitative Runge approximation and inverse problems"}]} | ||
| SRT | |a RUELANDANGQUANTITATI2019 | ||