Quantitative approximation properties for the fractional heat equation

In this note we analyse \emph{quantitative} approximation properties of a certain class of \emph{nonlocal} equations: Viewing the fractional heat equation as a model problem, which involves both \emph{local} and \emph{nonlocal} pseudodifferential operators, we study quantitative approximation proper...

Full description

Saved in:
Bibliographic Details
Main Authors: Rüland, Angkana (Author) , Salo, Mikko (Author)
Format: Article (Journal) Chapter/Article
Language:English
Published: 21 Aug 2017
In: Arxiv
Year: 2017, Pages: 1-24
Online Access:Verlag, lizenzpflichtig, Volltext: http://arxiv.org/abs/1708.06300
Get full text
Author Notes:Angkana Rüland and Mikko Salo

MARC

LEADER 00000caa a2200000 c 4500
001 1758990821
003 DE-627
005 20220819214923.0
007 cr uuu---uuuuu
008 210526s2017 xx |||||o 00| ||eng c
035 |a (DE-627)1758990821 
035 |a (DE-599)KXP1758990821 
035 |a (OCoLC)1341414045 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 27  |2 sdnb 
100 1 |a Rüland, Angkana  |d 1987-  |e VerfasserIn  |0 (DE-588)1051987679  |0 (DE-627)787342378  |0 (DE-576)407655506  |4 aut 
245 1 0 |a Quantitative approximation properties for the fractional heat equation  |c Angkana Rüland and Mikko Salo 
264 1 |c 21 Aug 2017 
300 |a 24 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 26.05.2021 
520 |a In this note we analyse \emph{quantitative} approximation properties of a certain class of \emph{nonlocal} equations: Viewing the fractional heat equation as a model problem, which involves both \emph{local} and \emph{nonlocal} pseudodifferential operators, we study quantitative approximation properties of solutions to it. First, relying on Runge type arguments, we give an alternative proof of certain \emph{qualitative} approximation results from \cite{DSV16}. Using propagation of smallness arguments, we then provide bounds on the \emph{cost} of approximate controllability and thus quantify the approximation properties of solutions to the fractional heat equation. Finally, we discuss generalizations of these results to a larger class of operators involving both local and nonlocal contributions. 
650 4 |a Mathematics - Analysis of PDEs 
700 1 |a Salo, Mikko  |d 1979-  |e VerfasserIn  |0 (DE-588)173729959  |0 (DE-627)698635841  |0 (DE-576)134570995  |4 aut 
773 0 8 |i Enthalten in  |t Arxiv  |d Ithaca, NY : Cornell University, 1991  |g (2017), Artikel-ID 1708.06300, Seite 1-24  |h Online-Ressource  |w (DE-627)509006531  |w (DE-600)2225896-6  |w (DE-576)28130436X  |7 nnas  |a Quantitative approximation properties for the fractional heat equation 
773 1 8 |g year:2017  |g elocationid:1708.06300  |g pages:1-24  |g extent:24  |a Quantitative approximation properties for the fractional heat equation 
856 4 0 |u http://arxiv.org/abs/1708.06300  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20210526 
993 |a Article 
994 |a 2017 
998 |g 1051987679  |a Rüland, Angkana  |m 1051987679:Rüland, Angkana  |p 1  |x j 
999 |a KXP-PPN1758990821  |e 3931334953 
BIB |a Y 
JSO |a {"person":[{"family":"Rüland","given":"Angkana","roleDisplay":"VerfasserIn","display":"Rüland, Angkana","role":"aut"},{"family":"Salo","given":"Mikko","display":"Salo, Mikko","roleDisplay":"VerfasserIn","role":"aut"}],"title":[{"title":"Quantitative approximation properties for the fractional heat equation","title_sort":"Quantitative approximation properties for the fractional heat equation"}],"recId":"1758990821","language":["eng"],"type":{"bibl":"chapter","media":"Online-Ressource"},"note":["Gesehen am 26.05.2021"],"name":{"displayForm":["Angkana Rüland and Mikko Salo"]},"id":{"eki":["1758990821"]},"origin":[{"dateIssuedKey":"2017","dateIssuedDisp":"21 Aug 2017"}],"relHost":[{"physDesc":[{"extent":"Online-Ressource"}],"origin":[{"dateIssuedDisp":"1991-","publisher":"Cornell University ; Arxiv.org","dateIssuedKey":"1991","publisherPlace":"Ithaca, NY ; [Erscheinungsort nicht ermittelbar]"}],"id":{"zdb":["2225896-6"],"eki":["509006531"]},"note":["Gesehen am 28.05.2024"],"disp":"Quantitative approximation properties for the fractional heat equationArxiv","type":{"bibl":"edited-book","media":"Online-Ressource"},"language":["eng"],"recId":"509006531","pubHistory":["1991 -"],"titleAlt":[{"title":"Arxiv.org"},{"title":"Arxiv.org e-print archive"},{"title":"Arxiv e-print archive"},{"title":"De.arxiv.org"}],"part":{"extent":"24","text":"(2017), Artikel-ID 1708.06300, Seite 1-24","pages":"1-24","year":"2017"},"title":[{"title_sort":"Arxiv","title":"Arxiv"}]}],"physDesc":[{"extent":"24 S."}]} 
SRT |a RUELANDANGQUANTITATI2120