Quantitative approximation properties for the fractional heat equation

<p style='text-indent:20px;'>In this article we analyse <i>quantitative</i> approximation properties of a certain class of <i>nonlocal</i> equations: Viewing the fractional heat equation as a model problem, which involves both <i>local</i> and <...

Full description

Saved in:
Bibliographic Details
Main Authors: Rüland, Angkana (Author) , Salo, Mikko (Author)
Format: Article (Journal)
Language:English
Published: March 2020
In: Mathematical control and related fields
Year: 2020, Volume: 10, Issue: 1, Pages: 1-26
ISSN:2156-8499
DOI:10.3934/mcrf.2019027
Online Access:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.3934/mcrf.2019027
Verlag, lizenzpflichtig, Volltext: https://www.aimsciences.org/article/doi/10.3934/mcrf.2019027
Get full text
Author Notes:Angkana Rüland, Mikko Salo
Description
Summary:<p style='text-indent:20px;'>In this article we analyse <i>quantitative</i> approximation properties of a certain class of <i>nonlocal</i> equations: Viewing the fractional heat equation as a model problem, which involves both <i>local</i> and <i>nonlocal</i> pseudodifferential operators, we study quantitative approximation properties of solutions to it. First, relying on Runge type arguments, we give an alternative proof of certain <i>qualitative</i> approximation results from [<xref ref-type="bibr" rid="b9">9</xref>]. Using propagation of smallness arguments, we then provide bounds on the <i>cost</i> of approximate controllability and thus quantify the approximation properties of solutions to the fractional heat equation. Finally, we discuss generalizations of these results to a larger class of operators involving both local and nonlocal contributions.</p>
Item Description:Gesehen am 26.05.2021
Physical Description:Online Resource
ISSN:2156-8499
DOI:10.3934/mcrf.2019027