Quantitative approximation properties for the fractional heat equation
<p style='text-indent:20px;'>In this article we analyse <i>quantitative</i> approximation properties of a certain class of <i>nonlocal</i> equations: Viewing the fractional heat equation as a model problem, which involves both <i>local</i> and <...
Saved in:
| Main Authors: | , |
|---|---|
| Format: | Article (Journal) |
| Language: | English |
| Published: |
March 2020
|
| In: |
Mathematical control and related fields
Year: 2020, Volume: 10, Issue: 1, Pages: 1-26 |
| ISSN: | 2156-8499 |
| DOI: | 10.3934/mcrf.2019027 |
| Online Access: | Verlag, lizenzpflichtig, Volltext: https://doi.org/10.3934/mcrf.2019027 Verlag, lizenzpflichtig, Volltext: https://www.aimsciences.org/article/doi/10.3934/mcrf.2019027 |
| Author Notes: | Angkana Rüland, Mikko Salo |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1758990937 | ||
| 003 | DE-627 | ||
| 005 | 20220819214931.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 210526s2020 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.3934/mcrf.2019027 |2 doi | |
| 035 | |a (DE-627)1758990937 | ||
| 035 | |a (DE-599)KXP1758990937 | ||
| 035 | |a (OCoLC)1341414046 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 27 |2 sdnb | ||
| 100 | 1 | |a Rüland, Angkana |d 1987- |e VerfasserIn |0 (DE-588)1051987679 |0 (DE-627)787342378 |0 (DE-576)407655506 |4 aut | |
| 245 | 1 | 0 | |a Quantitative approximation properties for the fractional heat equation |c Angkana Rüland, Mikko Salo |
| 264 | 1 | |c March 2020 | |
| 300 | |a 26 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Gesehen am 26.05.2021 | ||
| 520 | |a <p style='text-indent:20px;'>In this article we analyse <i>quantitative</i> approximation properties of a certain class of <i>nonlocal</i> equations: Viewing the fractional heat equation as a model problem, which involves both <i>local</i> and <i>nonlocal</i> pseudodifferential operators, we study quantitative approximation properties of solutions to it. First, relying on Runge type arguments, we give an alternative proof of certain <i>qualitative</i> approximation results from [<xref ref-type="bibr" rid="b9">9</xref>]. Using propagation of smallness arguments, we then provide bounds on the <i>cost</i> of approximate controllability and thus quantify the approximation properties of solutions to the fractional heat equation. Finally, we discuss generalizations of these results to a larger class of operators involving both local and nonlocal contributions.</p> | ||
| 700 | 1 | |a Salo, Mikko |d 1979- |e VerfasserIn |0 (DE-588)173729959 |0 (DE-627)698635841 |0 (DE-576)134570995 |4 aut | |
| 773 | 0 | 8 | |i Enthalten in |t Mathematical control and related fields |d Springfield, Mo. : AIMS, 2011 |g 10(2020), 1 vom: März, Seite 1-26 |h Online-Ressource |w (DE-627)824843266 |w (DE-600)2820577-7 |w (DE-576)432281800 |x 2156-8499 |7 nnas |a Quantitative approximation properties for the fractional heat equation |
| 773 | 1 | 8 | |g volume:10 |g year:2020 |g number:1 |g month:03 |g pages:1-26 |g extent:26 |a Quantitative approximation properties for the fractional heat equation |
| 856 | 4 | 0 | |u https://doi.org/10.3934/mcrf.2019027 |x Verlag |x Resolving-System |z lizenzpflichtig |3 Volltext |
| 856 | 4 | 0 | |u https://www.aimsciences.org/article/doi/10.3934/mcrf.2019027 |x Verlag |z lizenzpflichtig |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20210526 | ||
| 993 | |a Article | ||
| 994 | |a 2020 | ||
| 998 | |g 1051987679 |a Rüland, Angkana |m 1051987679:Rüland, Angkana |p 1 |x j | ||
| 999 | |a KXP-PPN1758990937 |e 393133662X | ||
| BIB | |a Y | ||
| SER | |a journal | ||
| JSO | |a {"type":{"media":"Online-Ressource","bibl":"article-journal"},"note":["Gesehen am 26.05.2021"],"language":["eng"],"recId":"1758990937","person":[{"role":"aut","roleDisplay":"VerfasserIn","display":"Rüland, Angkana","given":"Angkana","family":"Rüland"},{"role":"aut","roleDisplay":"VerfasserIn","display":"Salo, Mikko","given":"Mikko","family":"Salo"}],"title":[{"title_sort":"Quantitative approximation properties for the fractional heat equation","title":"Quantitative approximation properties for the fractional heat equation"}],"physDesc":[{"extent":"26 S."}],"relHost":[{"title":[{"title_sort":"Mathematical control and related fields","subtitle":"MCRF","title":"Mathematical control and related fields"}],"part":{"extent":"26","text":"10(2020), 1 vom: März, Seite 1-26","volume":"10","pages":"1-26","issue":"1","year":"2020"},"titleAlt":[{"title":"MCRF"}],"pubHistory":["1.2011 -"],"recId":"824843266","language":["eng"],"disp":"Quantitative approximation properties for the fractional heat equationMathematical control and related fields","type":{"media":"Online-Ressource","bibl":"periodical"},"note":["Gesehen am 08.07.24"],"id":{"issn":["2156-8499"],"zdb":["2820577-7"],"eki":["824843266"]},"origin":[{"publisher":"AIMS","dateIssuedKey":"2011","dateIssuedDisp":"2011-","publisherPlace":"Springfield, Mo."}],"name":{"displayForm":["American Institute of Mathematical Sciences"]},"physDesc":[{"extent":"Online-Ressource"}]}],"name":{"displayForm":["Angkana Rüland, Mikko Salo"]},"origin":[{"dateIssuedDisp":"March 2020","dateIssuedKey":"2020"}],"id":{"eki":["1758990937"],"doi":["10.3934/mcrf.2019027"]}} | ||
| SRT | |a RUELANDANGQUANTITATI2020 | ||