The fractional Calderón problem: Low regularity and stability

The Calderón problem for the fractional Schrödinger equation was introduced in the work Ghosh et al. (to appear) which gave a global uniqueness result also in the partial data case. This article improves this result in two ways. First, we prove a quantitative uniqueness result showing that this in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Rüland, Angkana (VerfasserIn) , Salo, Mikko (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 2020
In: Nonlinear analysis. Theory, methods & applications
Year: 2019, Jahrgang: 193, Pages: 1-56
ISSN:1873-5215
DOI:10.1016/j.na.2019.05.010
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1016/j.na.2019.05.010
Verlag, lizenzpflichtig, Volltext: https://www.sciencedirect.com/science/article/pii/S0362546X19301622
Volltext
Verfasserangaben:Angkana Rüland, Mikko Salo
Beschreibung
Zusammenfassung:The Calderón problem for the fractional Schrödinger equation was introduced in the work Ghosh et al. (to appear) which gave a global uniqueness result also in the partial data case. This article improves this result in two ways. First, we prove a quantitative uniqueness result showing that this inverse problem enjoys logarithmic stability under suitable a priori bounds. Second, we show that the results are valid for potentials in scale-invariant Lp or negative order Sobolev spaces. A key point is a quantitative approximation property for solutions of fractional equations, obtained by combining a careful propagation of smallness analysis for the Caffarelli-Silvestre extension and a duality argument.
Beschreibung:Available online 28 May 2019
Gesehen am 26.05.2021
Beschreibung:Online Resource
ISSN:1873-5215
DOI:10.1016/j.na.2019.05.010