The fractional Calderón problem: Low regularity and stability
The Calderón problem for the fractional Schrödinger equation was introduced in the work Ghosh et al. (to appear) which gave a global uniqueness result also in the partial data case. This article improves this result in two ways. First, we prove a quantitative uniqueness result showing that this in...
Gespeichert in:
| Hauptverfasser: | , |
|---|---|
| Dokumenttyp: | Article (Journal) |
| Sprache: | Englisch |
| Veröffentlicht: |
2020
|
| In: |
Nonlinear analysis. Theory, methods & applications
Year: 2019, Jahrgang: 193, Pages: 1-56 |
| ISSN: | 1873-5215 |
| DOI: | 10.1016/j.na.2019.05.010 |
| Online-Zugang: | Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1016/j.na.2019.05.010 Verlag, lizenzpflichtig, Volltext: https://www.sciencedirect.com/science/article/pii/S0362546X19301622 |
| Verfasserangaben: | Angkana Rüland, Mikko Salo |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1758991135 | ||
| 003 | DE-627 | ||
| 005 | 20240413193450.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 210526r20202019xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.1016/j.na.2019.05.010 |2 doi | |
| 035 | |a (DE-627)1758991135 | ||
| 035 | |a (DE-599)KXP1758991135 | ||
| 035 | |a (OCoLC)1341414568 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 27 |2 sdnb | ||
| 100 | 1 | |a Rüland, Angkana |d 1987- |e VerfasserIn |0 (DE-588)1051987679 |0 (DE-627)787342378 |0 (DE-576)407655506 |4 aut | |
| 245 | 1 | 4 | |a The fractional Calderón problem |b Low regularity and stability |c Angkana Rüland, Mikko Salo |
| 264 | 1 | |c 2020 | |
| 300 | |a 56 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Available online 28 May 2019 | ||
| 500 | |a Gesehen am 26.05.2021 | ||
| 520 | |a The Calderón problem for the fractional Schrödinger equation was introduced in the work Ghosh et al. (to appear) which gave a global uniqueness result also in the partial data case. This article improves this result in two ways. First, we prove a quantitative uniqueness result showing that this inverse problem enjoys logarithmic stability under suitable a priori bounds. Second, we show that the results are valid for potentials in scale-invariant Lp or negative order Sobolev spaces. A key point is a quantitative approximation property for solutions of fractional equations, obtained by combining a careful propagation of smallness analysis for the Caffarelli-Silvestre extension and a duality argument. | ||
| 534 | |c 2019 | ||
| 650 | 4 | |a Caldernón problem | |
| 650 | 4 | |a Fractional Laplacian | |
| 650 | 4 | |a Stability | |
| 700 | 1 | |a Salo, Mikko |d 1979- |e VerfasserIn |0 (DE-588)173729959 |0 (DE-627)698635841 |0 (DE-576)134570995 |4 aut | |
| 773 | 0 | 8 | |i Enthalten in |t Nonlinear analysis. Theory, methods & applications |d Amsterdam [u.a.] : Elsevier, Pergamon Press, 1976 |g 193(2020) vom: Apr., Artikel-ID 111529, Seite 1-56 |h Online-Ressource |w (DE-627)266876730 |w (DE-600)1467467-1 |w (DE-576)075144913 |x 1873-5215 |7 nnas |a The fractional Calderón problem Low regularity and stability |
| 773 | 1 | 8 | |g volume:193 |g year:2020 |g month:04 |g elocationid:111529 |g pages:1-56 |g extent:56 |a The fractional Calderón problem Low regularity and stability |
| 856 | 4 | 0 | |u https://doi.org/10.1016/j.na.2019.05.010 |x Verlag |x Resolving-System |z lizenzpflichtig |3 Volltext |
| 856 | 4 | 0 | |u https://www.sciencedirect.com/science/article/pii/S0362546X19301622 |x Verlag |z lizenzpflichtig |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20210526 | ||
| 993 | |a Article | ||
| 994 | |a 2020 | ||
| 998 | |g 1051987679 |a Rüland, Angkana |m 1051987679:Rüland, Angkana |d 110000 |d 110200 |d 110000 |d 110400 |e 110000PR1051987679 |e 110200PR1051987679 |e 110000PR1051987679 |e 110400PR1051987679 |k 0/110000/ |k 1/110000/110200/ |k 0/110000/ |k 1/110000/110400/ |p 1 |x j | ||
| 999 | |a KXP-PPN1758991135 |e 3931338258 | ||
| BIB | |a Y | ||
| SER | |a journal | ||
| JSO | |a {"person":[{"family":"Rüland","given":"Angkana","display":"Rüland, Angkana","roleDisplay":"VerfasserIn","role":"aut"},{"family":"Salo","given":"Mikko","roleDisplay":"VerfasserIn","display":"Salo, Mikko","role":"aut"}],"title":[{"title_sort":"fractional Calderón problem","subtitle":"Low regularity and stability","title":"The fractional Calderón problem"}],"recId":"1758991135","language":["eng"],"type":{"bibl":"article-journal","media":"Online-Ressource"},"note":["Available online 28 May 2019","Gesehen am 26.05.2021"],"name":{"displayForm":["Angkana Rüland, Mikko Salo"]},"id":{"doi":["10.1016/j.na.2019.05.010"],"eki":["1758991135"]},"origin":[{"dateIssuedKey":"2020","dateIssuedDisp":"2020"}],"relHost":[{"title":[{"title":"Nonlinear analysis","subtitle":"an international multidisciplinary journal","title_sort":"Nonlinear analysis","partname":"Theory, methods & applications"}],"pubHistory":["1.1976/77 -"],"titleAlt":[{"title":"Nonlinear analysis / Theory, methods and applications"},{"title":"Nonlinear Anal. TMA"}],"part":{"pages":"1-56","year":"2020","extent":"56","text":"193(2020) vom: Apr., Artikel-ID 111529, Seite 1-56","volume":"193"},"disp":"The fractional Calderón problem Low regularity and stabilityNonlinear analysis. Theory, methods & applications","type":{"bibl":"periodical","media":"Online-Ressource"},"note":["Gesehen am 21.03.25"],"language":["eng"],"recId":"266876730","origin":[{"publisherPlace":"Amsterdam [u.a.] ; Oxford [u.a.]","publisher":"Elsevier, Pergamon Press ; Pergamon Press","dateIssuedKey":"1976","dateIssuedDisp":"1976-"}],"id":{"issn":["1873-5215"],"zdb":["1467467-1"],"eki":["266876730"]},"physDesc":[{"extent":"Online-Ressource"}]}],"physDesc":[{"extent":"56 S."}]} | ||
| SRT | |a RUELANDANGFRACTIONAL2020 | ||