Optimal regularity for the thin obstacle problem with Co,α coefficients
In this article we study solutions to the (interior) thin obstacle problem under low regularity assumptions on the coefficients, the obstacle and the underlying manifold. Combining the linearization method of Andersson (Invent Math 204(1):1-82, 2016. doi:10.1007/s00222-015-0608-6) and the epiperimet...
Saved in:
| Main Authors: | , |
|---|---|
| Format: | Article (Journal) |
| Language: | English |
| Published: |
23 August 2017
|
| In: |
Calculus of variations and partial differential equations
Year: 2017, Volume: 56, Issue: 5, Pages: 1-41 |
| ISSN: | 1432-0835 |
| DOI: | 10.1007/s00526-017-1230-9 |
| Online Access: | Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1007/s00526-017-1230-9 |
| Author Notes: | Angkana Rüland, Wenhui Shi |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 175899178X | ||
| 003 | DE-627 | ||
| 005 | 20220819215009.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 210526s2017 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.1007/s00526-017-1230-9 |2 doi | |
| 035 | |a (DE-627)175899178X | ||
| 035 | |a (DE-599)KXP175899178X | ||
| 035 | |a (OCoLC)1341414617 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 27 |2 sdnb | ||
| 100 | 1 | |a Rüland, Angkana |d 1987- |e VerfasserIn |0 (DE-588)1051987679 |0 (DE-627)787342378 |0 (DE-576)407655506 |4 aut | |
| 245 | 1 | 0 | |a Optimal regularity for the thin obstacle problem with Co,α coefficients |c Angkana Rüland, Wenhui Shi |
| 246 | 3 | 3 | |a Optimal regularity for the thin obstacle problem with C o, alpha coefficients |
| 264 | 1 | |c 23 August 2017 | |
| 300 | |a 41 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Im Titel sind "0" und "α" hochgestellt | ||
| 500 | |a Gesehen am 26.05.2021 | ||
| 520 | |a In this article we study solutions to the (interior) thin obstacle problem under low regularity assumptions on the coefficients, the obstacle and the underlying manifold. Combining the linearization method of Andersson (Invent Math 204(1):1-82, 2016. doi:10.1007/s00222-015-0608-6) and the epiperimetric inequality from Focardi and Spadaro (Adv Differ Equ 21(1-2):153-200, 2016), Garofalo, Petrosyan and Smit Vega Garcia (J Math Pures Appl 105(6):745-787, 2016. doi:10.1016/j.matpur.2015.11.013), we prove the optimal $$C^{1,\min \{\alpha ,1/2\}}$$regularity of solutions in the presence of $$C^{0,\alpha }$$coefficients $$a^{ij}$$and $$C^{1,\alpha }$$obstacles $$\phi $$. Moreover we investigate the regularity of the regular free boundary and show that it has the structure of a $$C^{1,\gamma }$$manifold for some $$\gamma \in (0,1)$$. | ||
| 700 | 1 | |a Shi, Wenhui |e VerfasserIn |0 (DE-588)1234116103 |0 (DE-627)175899181X |4 aut | |
| 773 | 0 | 8 | |i Enthalten in |t Calculus of variations and partial differential equations |d Berlin : Springer, 1993 |g 56(2017), 5, Artikel-ID 129, Seite 1-41 |h Online-Ressource |w (DE-627)265508274 |w (DE-600)1464202-5 |w (DE-576)074889710 |x 1432-0835 |7 nnas |a Optimal regularity for the thin obstacle problem with Co,α coefficients |
| 773 | 1 | 8 | |g volume:56 |g year:2017 |g number:5 |g elocationid:129 |g pages:1-41 |g extent:41 |a Optimal regularity for the thin obstacle problem with Co,α coefficients |
| 856 | 4 | 0 | |u https://doi.org/10.1007/s00526-017-1230-9 |x Verlag |x Resolving-System |z lizenzpflichtig |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20210526 | ||
| 993 | |a Article | ||
| 994 | |a 2017 | ||
| 998 | |g 1051987679 |a Rüland, Angkana |m 1051987679:Rüland, Angkana |p 1 |x j | ||
| 999 | |a KXP-PPN175899178X |e 3931359670 | ||
| BIB | |a Y | ||
| SER | |a journal | ||
| JSO | |a {"language":["eng"],"recId":"175899178X","type":{"media":"Online-Ressource","bibl":"article-journal"},"note":["Im Titel sind \"0\" und \"α\" hochgestellt","Gesehen am 26.05.2021"],"titleAlt":[{"title":"Optimal regularity for the thin obstacle problem with C o, alpha coefficients"}],"person":[{"role":"aut","display":"Rüland, Angkana","roleDisplay":"VerfasserIn","given":"Angkana","family":"Rüland"},{"roleDisplay":"VerfasserIn","display":"Shi, Wenhui","role":"aut","family":"Shi","given":"Wenhui"}],"title":[{"title":"Optimal regularity for the thin obstacle problem with Co,α coefficients","title_sort":"Optimal regularity for the thin obstacle problem with Co,α coefficients"}],"relHost":[{"origin":[{"publisherPlace":"Berlin ; Heidelberg","publisher":"Springer","dateIssuedKey":"1993","dateIssuedDisp":"1993-"}],"id":{"zdb":["1464202-5"],"eki":["265508274"],"issn":["1432-0835"]},"physDesc":[{"extent":"Online-Ressource"}],"title":[{"title":"Calculus of variations and partial differential equations","title_sort":"Calculus of variations and partial differential equations"}],"disp":"Optimal regularity for the thin obstacle problem with Co,α coefficientsCalculus of variations and partial differential equations","type":{"media":"Online-Ressource","bibl":"periodical"},"note":["Gesehen am 01.11.05"],"recId":"265508274","language":["eng"],"pubHistory":["1.1993 -"],"part":{"text":"56(2017), 5, Artikel-ID 129, Seite 1-41","volume":"56","extent":"41","year":"2017","pages":"1-41","issue":"5"},"titleAlt":[{"title":"Calculus of variations"}]}],"physDesc":[{"extent":"41 S."}],"name":{"displayForm":["Angkana Rüland, Wenhui Shi"]},"id":{"eki":["175899178X"],"doi":["10.1007/s00526-017-1230-9"]},"origin":[{"dateIssuedDisp":"23 August 2017","dateIssuedKey":"2017"}]} | ||
| SRT | |a RUELANDANGOPTIMALREG2320 | ||