Optimal regularity for the thin obstacle problem with Co,α coefficients

In this article we study solutions to the (interior) thin obstacle problem under low regularity assumptions on the coefficients, the obstacle and the underlying manifold. Combining the linearization method of Andersson (Invent Math 204(1):1-82, 2016. doi:10.1007/s00222-015-0608-6) and the epiperimet...

Full description

Saved in:
Bibliographic Details
Main Authors: Rüland, Angkana (Author) , Shi, Wenhui (Author)
Format: Article (Journal)
Language:English
Published: 23 August 2017
In: Calculus of variations and partial differential equations
Year: 2017, Volume: 56, Issue: 5, Pages: 1-41
ISSN:1432-0835
DOI:10.1007/s00526-017-1230-9
Online Access:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1007/s00526-017-1230-9
Get full text
Author Notes:Angkana Rüland, Wenhui Shi

MARC

LEADER 00000caa a2200000 c 4500
001 175899178X
003 DE-627
005 20220819215009.0
007 cr uuu---uuuuu
008 210526s2017 xx |||||o 00| ||eng c
024 7 |a 10.1007/s00526-017-1230-9  |2 doi 
035 |a (DE-627)175899178X 
035 |a (DE-599)KXP175899178X 
035 |a (OCoLC)1341414617 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 27  |2 sdnb 
100 1 |a Rüland, Angkana  |d 1987-  |e VerfasserIn  |0 (DE-588)1051987679  |0 (DE-627)787342378  |0 (DE-576)407655506  |4 aut 
245 1 0 |a Optimal regularity for the thin obstacle problem with Co,α coefficients  |c Angkana Rüland, Wenhui Shi 
246 3 3 |a Optimal regularity for the thin obstacle problem with C o, alpha coefficients 
264 1 |c 23 August 2017 
300 |a 41 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Im Titel sind "0" und "α" hochgestellt 
500 |a Gesehen am 26.05.2021 
520 |a In this article we study solutions to the (interior) thin obstacle problem under low regularity assumptions on the coefficients, the obstacle and the underlying manifold. Combining the linearization method of Andersson (Invent Math 204(1):1-82, 2016. doi:10.1007/s00222-015-0608-6) and the epiperimetric inequality from Focardi and Spadaro (Adv Differ Equ 21(1-2):153-200, 2016), Garofalo, Petrosyan and Smit Vega Garcia (J Math Pures Appl 105(6):745-787, 2016. doi:10.1016/j.matpur.2015.11.013), we prove the optimal $$C^{1,\min \{\alpha ,1/2\}}$$regularity of solutions in the presence of $$C^{0,\alpha }$$coefficients $$a^{ij}$$and $$C^{1,\alpha }$$obstacles $$\phi $$. Moreover we investigate the regularity of the regular free boundary and show that it has the structure of a $$C^{1,\gamma }$$manifold for some $$\gamma \in (0,1)$$. 
700 1 |a Shi, Wenhui  |e VerfasserIn  |0 (DE-588)1234116103  |0 (DE-627)175899181X  |4 aut 
773 0 8 |i Enthalten in  |t Calculus of variations and partial differential equations  |d Berlin : Springer, 1993  |g 56(2017), 5, Artikel-ID 129, Seite 1-41  |h Online-Ressource  |w (DE-627)265508274  |w (DE-600)1464202-5  |w (DE-576)074889710  |x 1432-0835  |7 nnas  |a Optimal regularity for the thin obstacle problem with Co,α coefficients 
773 1 8 |g volume:56  |g year:2017  |g number:5  |g elocationid:129  |g pages:1-41  |g extent:41  |a Optimal regularity for the thin obstacle problem with Co,α coefficients 
856 4 0 |u https://doi.org/10.1007/s00526-017-1230-9  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20210526 
993 |a Article 
994 |a 2017 
998 |g 1051987679  |a Rüland, Angkana  |m 1051987679:Rüland, Angkana  |p 1  |x j 
999 |a KXP-PPN175899178X  |e 3931359670 
BIB |a Y 
SER |a journal 
JSO |a {"language":["eng"],"recId":"175899178X","type":{"media":"Online-Ressource","bibl":"article-journal"},"note":["Im Titel sind \"0\" und \"α\" hochgestellt","Gesehen am 26.05.2021"],"titleAlt":[{"title":"Optimal regularity for the thin obstacle problem with C o, alpha coefficients"}],"person":[{"role":"aut","display":"Rüland, Angkana","roleDisplay":"VerfasserIn","given":"Angkana","family":"Rüland"},{"roleDisplay":"VerfasserIn","display":"Shi, Wenhui","role":"aut","family":"Shi","given":"Wenhui"}],"title":[{"title":"Optimal regularity for the thin obstacle problem with Co,α coefficients","title_sort":"Optimal regularity for the thin obstacle problem with Co,α coefficients"}],"relHost":[{"origin":[{"publisherPlace":"Berlin ; Heidelberg","publisher":"Springer","dateIssuedKey":"1993","dateIssuedDisp":"1993-"}],"id":{"zdb":["1464202-5"],"eki":["265508274"],"issn":["1432-0835"]},"physDesc":[{"extent":"Online-Ressource"}],"title":[{"title":"Calculus of variations and partial differential equations","title_sort":"Calculus of variations and partial differential equations"}],"disp":"Optimal regularity for the thin obstacle problem with Co,α coefficientsCalculus of variations and partial differential equations","type":{"media":"Online-Ressource","bibl":"periodical"},"note":["Gesehen am 01.11.05"],"recId":"265508274","language":["eng"],"pubHistory":["1.1993 -"],"part":{"text":"56(2017), 5, Artikel-ID 129, Seite 1-41","volume":"56","extent":"41","year":"2017","pages":"1-41","issue":"5"},"titleAlt":[{"title":"Calculus of variations"}]}],"physDesc":[{"extent":"41 S."}],"name":{"displayForm":["Angkana Rüland, Wenhui Shi"]},"id":{"eki":["175899178X"],"doi":["10.1007/s00526-017-1230-9"]},"origin":[{"dateIssuedDisp":"23 August 2017","dateIssuedKey":"2017"}]} 
SRT |a RUELANDANGOPTIMALREG2320