Optimal regularity for the thin obstacle problem with CO,α coefficients
In this article we study solutions to the (interior) thin obstacle problem under low regularity assumptions on the coefficients, the obstacle and the underlying manifold. Combining the linearization method of Andersson \cite{An16} and the epiperimetric inequality from \cite{FS16}, \cite{GPSVG15}, we...
Gespeichert in:
| Hauptverfasser: | , |
|---|---|
| Dokumenttyp: | Article (Journal) Kapitel/Artikel |
| Sprache: | Englisch |
| Veröffentlicht: |
26 Oct 2016
|
| In: |
Arxiv
Year: 2016, Pages: 1-37 |
| Online-Zugang: | Verlag, lizenzpflichtig, Volltext: http://arxiv.org/abs/1610.07961 |
| Verfasserangaben: | Angkana Rüland and Wenhui Shi |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1758991917 | ||
| 003 | DE-627 | ||
| 005 | 20220819215018.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 210526s2016 xx |||||o 00| ||eng c | ||
| 035 | |a (DE-627)1758991917 | ||
| 035 | |a (DE-599)KXP1758991917 | ||
| 035 | |a (OCoLC)1341414603 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 27 |2 sdnb | ||
| 100 | 1 | |a Rüland, Angkana |d 1987- |e VerfasserIn |0 (DE-588)1051987679 |0 (DE-627)787342378 |0 (DE-576)407655506 |4 aut | |
| 245 | 1 | 0 | |a Optimal regularity for the thin obstacle problem with CO,α coefficients |c Angkana Rüland and Wenhui Shi |
| 246 | 3 | 3 | |a Optimal regularity for the thin obstacle problem with C O, alpha coefficients |
| 264 | 1 | |c 26 Oct 2016 | |
| 300 | |a 37 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Im Titel sind "0" und "α" hochgestellt | ||
| 500 | |a Gesehen am 26.05.2021 | ||
| 520 | |a In this article we study solutions to the (interior) thin obstacle problem under low regularity assumptions on the coefficients, the obstacle and the underlying manifold. Combining the linearization method of Andersson \cite{An16} and the epiperimetric inequality from \cite{FS16}, \cite{GPSVG15}, we prove the optimal $C^{1,\min\{\alpha,1/2\}}$ regularity of solutions in the presence of $C^{0,\alpha}$ coefficients $a^{ij}$ and $C^{1,\alpha}$ obstacles $\phi$. Moreover we investigate the regularity of the regular free boundary and show that it has the structure of a $C^{1,\gamma}$ manifold for some $\gamma \in (0,1)$. | ||
| 650 | 4 | |a Mathematics - Analysis of PDEs | |
| 700 | 1 | |a Shi, Wenhui |e VerfasserIn |0 (DE-588)1234116103 |0 (DE-627)175899181X |4 aut | |
| 773 | 0 | 8 | |i Enthalten in |t Arxiv |d Ithaca, NY : Cornell University, 1991 |g (2016), Artikel-ID 1610.07961, Seite 1-37 |h Online-Ressource |w (DE-627)509006531 |w (DE-600)2225896-6 |w (DE-576)28130436X |7 nnas |a Optimal regularity for the thin obstacle problem with CO,α coefficients |
| 773 | 1 | 8 | |g year:2016 |g elocationid:1610.07961 |g pages:1-37 |g extent:37 |a Optimal regularity for the thin obstacle problem with CO,α coefficients |
| 856 | 4 | 0 | |u http://arxiv.org/abs/1610.07961 |x Verlag |z lizenzpflichtig |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20210526 | ||
| 993 | |a Article | ||
| 994 | |a 2016 | ||
| 998 | |g 1051987679 |a Rüland, Angkana |m 1051987679:Rüland, Angkana |p 1 |x j | ||
| 999 | |a KXP-PPN1758991917 |e 3931360253 | ||
| BIB | |a Y | ||
| JSO | |a {"person":[{"given":"Angkana","family":"Rüland","role":"aut","roleDisplay":"VerfasserIn","display":"Rüland, Angkana"},{"given":"Wenhui","family":"Shi","role":"aut","display":"Shi, Wenhui","roleDisplay":"VerfasserIn"}],"title":[{"title":"Optimal regularity for the thin obstacle problem with CO,α coefficients","title_sort":"Optimal regularity for the thin obstacle problem with CO,α coefficients"}],"language":["eng"],"recId":"1758991917","type":{"bibl":"chapter","media":"Online-Ressource"},"note":["Im Titel sind \"0\" und \"α\" hochgestellt","Gesehen am 26.05.2021"],"titleAlt":[{"title":"Optimal regularity for the thin obstacle problem with C O, alpha coefficients"}],"name":{"displayForm":["Angkana Rüland and Wenhui Shi"]},"id":{"eki":["1758991917"]},"origin":[{"dateIssuedDisp":"26 Oct 2016","dateIssuedKey":"2016"}],"relHost":[{"id":{"eki":["509006531"],"zdb":["2225896-6"]},"origin":[{"publisherPlace":"Ithaca, NY ; [Erscheinungsort nicht ermittelbar]","publisher":"Cornell University ; Arxiv.org","dateIssuedKey":"1991","dateIssuedDisp":"1991-"}],"physDesc":[{"extent":"Online-Ressource"}],"title":[{"title":"Arxiv","title_sort":"Arxiv"}],"part":{"pages":"1-37","year":"2016","extent":"37","text":"(2016), Artikel-ID 1610.07961, Seite 1-37"},"titleAlt":[{"title":"Arxiv.org"},{"title":"Arxiv.org e-print archive"},{"title":"Arxiv e-print archive"},{"title":"De.arxiv.org"}],"pubHistory":["1991 -"],"language":["eng"],"recId":"509006531","disp":"Optimal regularity for the thin obstacle problem with CO,α coefficientsArxiv","type":{"bibl":"edited-book","media":"Online-Ressource"},"note":["Gesehen am 28.05.2024"]}],"physDesc":[{"extent":"37 S."}]} | ||
| SRT | |a RUELANDANGOPTIMALREG2620 | ||