Optimal regularity for the thin obstacle problem with CO,α coefficients

In this article we study solutions to the (interior) thin obstacle problem under low regularity assumptions on the coefficients, the obstacle and the underlying manifold. Combining the linearization method of Andersson \cite{An16} and the epiperimetric inequality from \cite{FS16}, \cite{GPSVG15}, we...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Rüland, Angkana (VerfasserIn) , Shi, Wenhui (VerfasserIn)
Dokumenttyp: Article (Journal) Kapitel/Artikel
Sprache:Englisch
Veröffentlicht: 26 Oct 2016
In: Arxiv
Year: 2016, Pages: 1-37
Online-Zugang:Verlag, lizenzpflichtig, Volltext: http://arxiv.org/abs/1610.07961
Volltext
Verfasserangaben:Angkana Rüland and Wenhui Shi
Beschreibung
Zusammenfassung:In this article we study solutions to the (interior) thin obstacle problem under low regularity assumptions on the coefficients, the obstacle and the underlying manifold. Combining the linearization method of Andersson \cite{An16} and the epiperimetric inequality from \cite{FS16}, \cite{GPSVG15}, we prove the optimal $C^{1,\min\{\alpha,1/2\}}$ regularity of solutions in the presence of $C^{0,\alpha}$ coefficients $a^{ij}$ and $C^{1,\alpha}$ obstacles $\phi$. Moreover we investigate the regularity of the regular free boundary and show that it has the structure of a $C^{1,\gamma}$ manifold for some $\gamma \in (0,1)$.
Beschreibung:Im Titel sind "0" und "α" hochgestellt
Gesehen am 26.05.2021
Beschreibung:Online Resource