Higher Sobolev regularity of convex integration solutions in elasticity
In this article we discuss quantitative properties of convex integration solutions arising in problems modeling shape-memory materials. For a two-dimensional, geometrically linearized model case, the hexagonal-to-rhombic phase transformation, we prove the existence of convex integration solutions $u...
Gespeichert in:
| Hauptverfasser: | , , |
|---|---|
| Dokumenttyp: | Article (Journal) Kapitel/Artikel |
| Sprache: | Englisch |
| Veröffentlicht: |
8 Oct 2016
|
| In: |
Arxiv
Year: 2016, Pages: 1-69 |
| Online-Zugang: | Verlag, lizenzpflichtig, Volltext: http://arxiv.org/abs/1610.02529 |
| Verfasserangaben: | Angkana Rüland, Christian Zillinger, and Barbara Zwicknagl |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1759056278 | ||
| 003 | DE-627 | ||
| 005 | 20220819215535.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 210527s2016 xx |||||o 00| ||eng c | ||
| 035 | |a (DE-627)1759056278 | ||
| 035 | |a (DE-599)KXP1759056278 | ||
| 035 | |a (OCoLC)1341414749 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 27 |2 sdnb | ||
| 100 | 1 | |a Rüland, Angkana |d 1987- |e VerfasserIn |0 (DE-588)1051987679 |0 (DE-627)787342378 |0 (DE-576)407655506 |4 aut | |
| 245 | 1 | 0 | |a Higher Sobolev regularity of convex integration solutions in elasticity |c Angkana Rüland, Christian Zillinger, and Barbara Zwicknagl |
| 264 | 1 | |c 8 Oct 2016 | |
| 300 | |a 69 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Gesehen am 27.05.2021 | ||
| 520 | |a In this article we discuss quantitative properties of convex integration solutions arising in problems modeling shape-memory materials. For a two-dimensional, geometrically linearized model case, the hexagonal-to-rhombic phase transformation, we prove the existence of convex integration solutions $u$ with higher Sobolev regularity, i.e. there exists $\theta_0>0$ such that $\nabla u \in W^{s,p}_{loc}(\mathbb{R}^2)\cap L^{\infty}(\mathbb{R}^2)$ for $s\in(0,1)$, $p\in(1,\infty)$ with $0<sp < \theta_0$. We also recall a construction, which shows that in situations with additional symmetry much better regularity properties hold. | ||
| 650 | 4 | |a Mathematics - Analysis of PDEs | |
| 700 | 1 | |a Zillinger, Christian |d 1988- |e VerfasserIn |0 (DE-588)1030354405 |0 (DE-627)735116431 |0 (DE-576)378161326 |4 aut | |
| 700 | 1 | |a Zwicknagl, Barbara |e VerfasserIn |0 (DE-588)1233399373 |0 (DE-627)1757756906 |4 aut | |
| 773 | 0 | 8 | |i Enthalten in |t Arxiv |d Ithaca, NY : Cornell University, 1991 |g (2016), Artikel-ID 1610.02529, Seite 1-69 |h Online-Ressource |w (DE-627)509006531 |w (DE-600)2225896-6 |w (DE-576)28130436X |7 nnas |a Higher Sobolev regularity of convex integration solutions in elasticity |
| 773 | 1 | 8 | |g year:2016 |g elocationid:1610.02529 |g pages:1-69 |g extent:69 |a Higher Sobolev regularity of convex integration solutions in elasticity |
| 856 | 4 | 0 | |u http://arxiv.org/abs/1610.02529 |x Verlag |z lizenzpflichtig |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20210527 | ||
| 993 | |a Article | ||
| 994 | |a 2016 | ||
| 998 | |g 1051987679 |a Rüland, Angkana |m 1051987679:Rüland, Angkana |p 1 |x j | ||
| 999 | |a KXP-PPN1759056278 |e 393179668X | ||
| BIB | |a Y | ||
| JSO | |a {"id":{"eki":["1759056278"]},"origin":[{"dateIssuedDisp":"8 Oct 2016","dateIssuedKey":"2016"}],"name":{"displayForm":["Angkana Rüland, Christian Zillinger, and Barbara Zwicknagl"]},"relHost":[{"origin":[{"publisherPlace":"Ithaca, NY ; [Erscheinungsort nicht ermittelbar]","dateIssuedKey":"1991","publisher":"Cornell University ; Arxiv.org","dateIssuedDisp":"1991-"}],"id":{"eki":["509006531"],"zdb":["2225896-6"]},"physDesc":[{"extent":"Online-Ressource"}],"title":[{"title":"Arxiv","title_sort":"Arxiv"}],"pubHistory":["1991 -"],"titleAlt":[{"title":"Arxiv.org"},{"title":"Arxiv.org e-print archive"},{"title":"Arxiv e-print archive"},{"title":"De.arxiv.org"}],"part":{"year":"2016","pages":"1-69","text":"(2016), Artikel-ID 1610.02529, Seite 1-69","extent":"69"},"note":["Gesehen am 28.05.2024"],"disp":"Higher Sobolev regularity of convex integration solutions in elasticityArxiv","type":{"media":"Online-Ressource","bibl":"edited-book"},"recId":"509006531","language":["eng"]}],"physDesc":[{"extent":"69 S."}],"title":[{"title":"Higher Sobolev regularity of convex integration solutions in elasticity","title_sort":"Higher Sobolev regularity of convex integration solutions in elasticity"}],"person":[{"display":"Rüland, Angkana","roleDisplay":"VerfasserIn","role":"aut","family":"Rüland","given":"Angkana"},{"family":"Zillinger","given":"Christian","display":"Zillinger, Christian","roleDisplay":"VerfasserIn","role":"aut"},{"role":"aut","roleDisplay":"VerfasserIn","display":"Zwicknagl, Barbara","given":"Barbara","family":"Zwicknagl"}],"language":["eng"],"recId":"1759056278","note":["Gesehen am 27.05.2021"],"type":{"bibl":"chapter","media":"Online-Ressource"}} | ||
| SRT | |a RUELANDANGHIGHERSOBO8201 | ||