Higher regularity for the fractional thin obstacle problem
In this article we investigate the higher regularity properties of the regular free boundary in the fractional thin obstacle problem. Relying on a Hodograph-Legendre transform, we show that for smooth or analytic obstacles the regular free boundary is smooth or analytic, respectively. This leads to...
Gespeichert in:
| Hauptverfasser: | , , |
|---|---|
| Dokumenttyp: | Article (Journal) Kapitel/Artikel |
| Sprache: | Englisch |
| Veröffentlicht: |
21 May 2016
|
| In: |
Arxiv
Year: 2016, Pages: 1-79 |
| Online-Zugang: | Verlag, lizenzpflichtig, Volltext: http://arxiv.org/abs/1605.06662 |
| Verfasserangaben: | Herbert Koch, Angkana Rüland, and Wenhui Shi |
| Zusammenfassung: | In this article we investigate the higher regularity properties of the regular free boundary in the fractional thin obstacle problem. Relying on a Hodograph-Legendre transform, we show that for smooth or analytic obstacles the regular free boundary is smooth or analytic, respectively. This leads to the analysis of a fully nonlinear, degenerate (sub)elliptic operator which we identify as a (fully nonlinear) perturbation of the fractional Baouendi-Grushin Laplacian. Using its intrinsic geometry and adapted function spaces, we invoke the analytic implicit function theorem to deduce analyticity of the regular free boundary. |
|---|---|
| Beschreibung: | Gesehen am 27.05.2021 |
| Beschreibung: | Online Resource |