Higher regularity for the fractional thin obstacle problem
In this article we investigate the higher regularity properties of the regular free boundary in the fractional thin obstacle problem. Relying on a Hodograph-Legendre transform, we show that for smooth or analytic obstacles the regular free boundary is smooth or analytic, respectively. This leads to...
Saved in:
| Main Authors: | , , |
|---|---|
| Format: | Article (Journal) Chapter/Article |
| Language: | English |
| Published: |
21 May 2016
|
| In: |
Arxiv
Year: 2016, Pages: 1-79 |
| Online Access: | Verlag, lizenzpflichtig, Volltext: http://arxiv.org/abs/1605.06662 |
| Author Notes: | Herbert Koch, Angkana Rüland, and Wenhui Shi |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1759067679 | ||
| 003 | DE-627 | ||
| 005 | 20220819215550.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 210527s2016 xx |||||o 00| ||eng c | ||
| 035 | |a (DE-627)1759067679 | ||
| 035 | |a (DE-599)KXP1759067679 | ||
| 035 | |a (OCoLC)1341414756 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 27 |2 sdnb | ||
| 100 | 1 | |a Koch, Herbert |d 1962- |e VerfasserIn |0 (DE-588)140473734 |0 (DE-627)703686720 |0 (DE-576)31824246X |4 aut | |
| 245 | 1 | 0 | |a Higher regularity for the fractional thin obstacle problem |c Herbert Koch, Angkana Rüland, and Wenhui Shi |
| 264 | 1 | |c 21 May 2016 | |
| 300 | |a 79 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Gesehen am 27.05.2021 | ||
| 520 | |a In this article we investigate the higher regularity properties of the regular free boundary in the fractional thin obstacle problem. Relying on a Hodograph-Legendre transform, we show that for smooth or analytic obstacles the regular free boundary is smooth or analytic, respectively. This leads to the analysis of a fully nonlinear, degenerate (sub)elliptic operator which we identify as a (fully nonlinear) perturbation of the fractional Baouendi-Grushin Laplacian. Using its intrinsic geometry and adapted function spaces, we invoke the analytic implicit function theorem to deduce analyticity of the regular free boundary. | ||
| 650 | 4 | |a Mathematics - Analysis of PDEs | |
| 700 | 1 | |a Rüland, Angkana |d 1987- |e VerfasserIn |0 (DE-588)1051987679 |0 (DE-627)787342378 |0 (DE-576)407655506 |4 aut | |
| 700 | 1 | |a Shi, Wenhui |e VerfasserIn |0 (DE-588)1234116103 |0 (DE-627)175899181X |4 aut | |
| 773 | 0 | 8 | |i Enthalten in |t Arxiv |d Ithaca, NY : Cornell University, 1991 |g (2016), Artikel-ID 1605.06662, Seite 1-79 |h Online-Ressource |w (DE-627)509006531 |w (DE-600)2225896-6 |w (DE-576)28130436X |7 nnas |a Higher regularity for the fractional thin obstacle problem |
| 773 | 1 | 8 | |g year:2016 |g elocationid:1605.06662 |g pages:1-79 |g extent:79 |a Higher regularity for the fractional thin obstacle problem |
| 856 | 4 | 0 | |u http://arxiv.org/abs/1605.06662 |x Verlag |z lizenzpflichtig |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20210527 | ||
| 993 | |a Article | ||
| 994 | |a 2016 | ||
| 998 | |g 1051987679 |a Rüland, Angkana |m 1051987679:Rüland, Angkana |p 2 | ||
| 999 | |a KXP-PPN1759067679 |e 3931830012 | ||
| BIB | |a Y | ||
| JSO | |a {"language":["eng"],"recId":"1759067679","note":["Gesehen am 27.05.2021"],"type":{"media":"Online-Ressource","bibl":"chapter"},"title":[{"title_sort":"Higher regularity for the fractional thin obstacle problem","title":"Higher regularity for the fractional thin obstacle problem"}],"person":[{"given":"Herbert","family":"Koch","role":"aut","display":"Koch, Herbert","roleDisplay":"VerfasserIn"},{"given":"Angkana","family":"Rüland","role":"aut","roleDisplay":"VerfasserIn","display":"Rüland, Angkana"},{"family":"Shi","given":"Wenhui","roleDisplay":"VerfasserIn","display":"Shi, Wenhui","role":"aut"}],"relHost":[{"title":[{"title_sort":"Arxiv","title":"Arxiv"}],"language":["eng"],"recId":"509006531","note":["Gesehen am 28.05.2024"],"disp":"Higher regularity for the fractional thin obstacle problemArxiv","type":{"media":"Online-Ressource","bibl":"edited-book"},"part":{"extent":"79","text":"(2016), Artikel-ID 1605.06662, Seite 1-79","pages":"1-79","year":"2016"},"titleAlt":[{"title":"Arxiv.org"},{"title":"Arxiv.org e-print archive"},{"title":"Arxiv e-print archive"},{"title":"De.arxiv.org"}],"pubHistory":["1991 -"],"id":{"zdb":["2225896-6"],"eki":["509006531"]},"origin":[{"publisherPlace":"Ithaca, NY ; [Erscheinungsort nicht ermittelbar]","publisher":"Cornell University ; Arxiv.org","dateIssuedKey":"1991","dateIssuedDisp":"1991-"}],"physDesc":[{"extent":"Online-Ressource"}]}],"physDesc":[{"extent":"79 S."}],"id":{"eki":["1759067679"]},"origin":[{"dateIssuedKey":"2016","dateIssuedDisp":"21 May 2016"}],"name":{"displayForm":["Herbert Koch, Angkana Rüland, and Wenhui Shi"]}} | ||
| SRT | |a KOCHHERBERHIGHERREGU2120 | ||