The variable coefficient thin obstacle problem: higher regularity

In this article, we continue our investigation of the variable coefficients thin obstacle problem which was initiated in [20], [21]. Using a partial Hodograph-Legendre transform and the implicit function theorem, we prove the higher order Hölder regularity for the regular free boundary, if the asso...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Koch, Herbert (VerfasserIn) , Rüland, Angkana (VerfasserIn) , Shi, Wenhui (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 2017
In: Advances in differential equations
Year: 2017, Jahrgang: 22, Heft: 11/12, Pages: 793-866
ISSN:1079-9389
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://projecteuclid.org/journals/advances-in-differential-equations/volume-22/issue-11_2f_12/The-variable-coefficient-thin-obstacle-problem-Higher-regularity/ade/1504231224.full
Volltext
Verfasserangaben:Herbert Koch, Angkana Rüland, Wenhui Shi

MARC

LEADER 00000caa a2200000 c 4500
001 1759070955
003 DE-627
005 20220819215621.0
007 cr uuu---uuuuu
008 210527s2017 xx |||||o 00| ||eng c
035 |a (DE-627)1759070955 
035 |a (DE-599)KXP1759070955 
035 |a (OCoLC)1341414633 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 27  |2 sdnb 
100 1 |a Koch, Herbert  |d 1962-  |e VerfasserIn  |0 (DE-588)140473734  |0 (DE-627)703686720  |0 (DE-576)31824246X  |4 aut 
245 1 4 |a The variable coefficient thin obstacle problem  |b higher regularity  |c Herbert Koch, Angkana Rüland, Wenhui Shi 
264 1 |c 2017 
300 |a 74 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 27.05.2021 
520 |a In this article, we continue our investigation of the variable coefficients thin obstacle problem which was initiated in [20], [21]. Using a partial Hodograph-Legendre transform and the implicit function theorem, we prove the higher order Hölder regularity for the regular free boundary, if the associated coefficients are of the corresponding regularity. For the zero obstacle, this yields an improvement of a full derivative for the free boundary regularity compared to the regularity of the coefficients. In the presence of inhomogeneities, we gain three halves of a derivative for the free boundary regularity with respect to the regularity of the inhomogeneity. Further, we show analyticity of the regular free boundary for analytic coefficients. We also discuss the set-up of $W^{1,p}$ coefficients with $p>n+1$ and $L^p$ inhomogeneities. Key ingredients in our analysis are the introduction of generalized Hölder spaces, which allow to interpret the transformed fully nonlinear, degenerate (sub)elliptic equation as a perturbation of the Baouendi-Grushin operator, various uses of intrinsic geometries associated with appropriate operators, the application of the implicit function theorem to deduce (higher) regularity. 
650 4 |a 35R35 
700 1 |a Rüland, Angkana  |d 1987-  |e VerfasserIn  |0 (DE-588)1051987679  |0 (DE-627)787342378  |0 (DE-576)407655506  |4 aut 
700 1 |a Shi, Wenhui  |e VerfasserIn  |0 (DE-588)1234116103  |0 (DE-627)175899181X  |4 aut 
773 0 8 |i Enthalten in  |t Advances in differential equations  |d Athens, Ohio : Khayyam Publ., 1996  |g 22(2017), 11/12 vom: Nov., Seite 793-866  |h Online-Ressource  |w (DE-627)327406089  |w (DE-600)2044383-3  |w (DE-576)377766712  |x 1079-9389  |7 nnas  |a The variable coefficient thin obstacle problem higher regularity 
773 1 8 |g volume:22  |g year:2017  |g number:11/12  |g month:11  |g pages:793-866  |g extent:74  |a The variable coefficient thin obstacle problem higher regularity 
856 4 0 |u https://projecteuclid.org/journals/advances-in-differential-equations/volume-22/issue-11_2f_12/The-variable-coefficient-thin-obstacle-problem-Higher-regularity/ade/1504231224.full  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20210527 
993 |a Article 
994 |a 2017 
998 |g 1051987679  |a Rüland, Angkana  |m 1051987679:Rüland, Angkana  |p 2 
999 |a KXP-PPN1759070955  |e 3931837343 
BIB |a Y 
SER |a journal 
JSO |a {"relHost":[{"physDesc":[{"extent":"Online-Ressource"}],"origin":[{"dateIssuedKey":"1996","publisher":"Khayyam Publ.","dateIssuedDisp":"1996-","publisherPlace":"Athens, Ohio"}],"id":{"issn":["1079-9389"],"zdb":["2044383-3"],"eki":["327406089"]},"note":["Gesehen am 09.08.2021","Fortsetzung der Druck-Ausgabe"],"type":{"bibl":"periodical","media":"Online-Ressource"},"disp":"The variable coefficient thin obstacle problem higher regularityAdvances in differential equations","language":["eng"],"recId":"327406089","pubHistory":["1.1996 -"],"part":{"volume":"22","text":"22(2017), 11/12 vom: Nov., Seite 793-866","extent":"74","year":"2017","issue":"11/12","pages":"793-866"},"title":[{"title_sort":"Advances in differential equations","title":"Advances in differential equations"}]}],"physDesc":[{"extent":"74 S."}],"id":{"eki":["1759070955"]},"origin":[{"dateIssuedDisp":"2017","dateIssuedKey":"2017"}],"name":{"displayForm":["Herbert Koch, Angkana Rüland, Wenhui Shi"]},"recId":"1759070955","language":["eng"],"type":{"bibl":"article-journal","media":"Online-Ressource"},"note":["Gesehen am 27.05.2021"],"title":[{"title_sort":"variable coefficient thin obstacle problem","title":"The variable coefficient thin obstacle problem","subtitle":"higher regularity"}],"person":[{"role":"aut","roleDisplay":"VerfasserIn","display":"Koch, Herbert","given":"Herbert","family":"Koch"},{"role":"aut","roleDisplay":"VerfasserIn","display":"Rüland, Angkana","given":"Angkana","family":"Rüland"},{"role":"aut","roleDisplay":"VerfasserIn","display":"Shi, Wenhui","given":"Wenhui","family":"Shi"}]} 
SRT |a KOCHHERBERVARIABLECO2017