The variable coefficient thin obstacle problem: higher regularity
In this article, we continue our investigation of the variable coefficients thin obstacle problem which was initiated in [20], [21]. Using a partial Hodograph-Legendre transform and the implicit function theorem, we prove the higher order Hölder regularity for the regular free boundary, if the asso...
Gespeichert in:
| Hauptverfasser: | , , |
|---|---|
| Dokumenttyp: | Article (Journal) |
| Sprache: | Englisch |
| Veröffentlicht: |
2017
|
| In: |
Advances in differential equations
Year: 2017, Jahrgang: 22, Heft: 11/12, Pages: 793-866 |
| ISSN: | 1079-9389 |
| Online-Zugang: | Verlag, lizenzpflichtig, Volltext: https://projecteuclid.org/journals/advances-in-differential-equations/volume-22/issue-11_2f_12/The-variable-coefficient-thin-obstacle-problem-Higher-regularity/ade/1504231224.full |
| Verfasserangaben: | Herbert Koch, Angkana Rüland, Wenhui Shi |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1759070955 | ||
| 003 | DE-627 | ||
| 005 | 20220819215621.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 210527s2017 xx |||||o 00| ||eng c | ||
| 035 | |a (DE-627)1759070955 | ||
| 035 | |a (DE-599)KXP1759070955 | ||
| 035 | |a (OCoLC)1341414633 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 27 |2 sdnb | ||
| 100 | 1 | |a Koch, Herbert |d 1962- |e VerfasserIn |0 (DE-588)140473734 |0 (DE-627)703686720 |0 (DE-576)31824246X |4 aut | |
| 245 | 1 | 4 | |a The variable coefficient thin obstacle problem |b higher regularity |c Herbert Koch, Angkana Rüland, Wenhui Shi |
| 264 | 1 | |c 2017 | |
| 300 | |a 74 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Gesehen am 27.05.2021 | ||
| 520 | |a In this article, we continue our investigation of the variable coefficients thin obstacle problem which was initiated in [20], [21]. Using a partial Hodograph-Legendre transform and the implicit function theorem, we prove the higher order Hölder regularity for the regular free boundary, if the associated coefficients are of the corresponding regularity. For the zero obstacle, this yields an improvement of a full derivative for the free boundary regularity compared to the regularity of the coefficients. In the presence of inhomogeneities, we gain three halves of a derivative for the free boundary regularity with respect to the regularity of the inhomogeneity. Further, we show analyticity of the regular free boundary for analytic coefficients. We also discuss the set-up of $W^{1,p}$ coefficients with $p>n+1$ and $L^p$ inhomogeneities. Key ingredients in our analysis are the introduction of generalized Hölder spaces, which allow to interpret the transformed fully nonlinear, degenerate (sub)elliptic equation as a perturbation of the Baouendi-Grushin operator, various uses of intrinsic geometries associated with appropriate operators, the application of the implicit function theorem to deduce (higher) regularity. | ||
| 650 | 4 | |a 35R35 | |
| 700 | 1 | |a Rüland, Angkana |d 1987- |e VerfasserIn |0 (DE-588)1051987679 |0 (DE-627)787342378 |0 (DE-576)407655506 |4 aut | |
| 700 | 1 | |a Shi, Wenhui |e VerfasserIn |0 (DE-588)1234116103 |0 (DE-627)175899181X |4 aut | |
| 773 | 0 | 8 | |i Enthalten in |t Advances in differential equations |d Athens, Ohio : Khayyam Publ., 1996 |g 22(2017), 11/12 vom: Nov., Seite 793-866 |h Online-Ressource |w (DE-627)327406089 |w (DE-600)2044383-3 |w (DE-576)377766712 |x 1079-9389 |7 nnas |a The variable coefficient thin obstacle problem higher regularity |
| 773 | 1 | 8 | |g volume:22 |g year:2017 |g number:11/12 |g month:11 |g pages:793-866 |g extent:74 |a The variable coefficient thin obstacle problem higher regularity |
| 856 | 4 | 0 | |u https://projecteuclid.org/journals/advances-in-differential-equations/volume-22/issue-11_2f_12/The-variable-coefficient-thin-obstacle-problem-Higher-regularity/ade/1504231224.full |x Verlag |z lizenzpflichtig |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20210527 | ||
| 993 | |a Article | ||
| 994 | |a 2017 | ||
| 998 | |g 1051987679 |a Rüland, Angkana |m 1051987679:Rüland, Angkana |p 2 | ||
| 999 | |a KXP-PPN1759070955 |e 3931837343 | ||
| BIB | |a Y | ||
| SER | |a journal | ||
| JSO | |a {"relHost":[{"physDesc":[{"extent":"Online-Ressource"}],"origin":[{"dateIssuedKey":"1996","publisher":"Khayyam Publ.","dateIssuedDisp":"1996-","publisherPlace":"Athens, Ohio"}],"id":{"issn":["1079-9389"],"zdb":["2044383-3"],"eki":["327406089"]},"note":["Gesehen am 09.08.2021","Fortsetzung der Druck-Ausgabe"],"type":{"bibl":"periodical","media":"Online-Ressource"},"disp":"The variable coefficient thin obstacle problem higher regularityAdvances in differential equations","language":["eng"],"recId":"327406089","pubHistory":["1.1996 -"],"part":{"volume":"22","text":"22(2017), 11/12 vom: Nov., Seite 793-866","extent":"74","year":"2017","issue":"11/12","pages":"793-866"},"title":[{"title_sort":"Advances in differential equations","title":"Advances in differential equations"}]}],"physDesc":[{"extent":"74 S."}],"id":{"eki":["1759070955"]},"origin":[{"dateIssuedDisp":"2017","dateIssuedKey":"2017"}],"name":{"displayForm":["Herbert Koch, Angkana Rüland, Wenhui Shi"]},"recId":"1759070955","language":["eng"],"type":{"bibl":"article-journal","media":"Online-Ressource"},"note":["Gesehen am 27.05.2021"],"title":[{"title_sort":"variable coefficient thin obstacle problem","title":"The variable coefficient thin obstacle problem","subtitle":"higher regularity"}],"person":[{"role":"aut","roleDisplay":"VerfasserIn","display":"Koch, Herbert","given":"Herbert","family":"Koch"},{"role":"aut","roleDisplay":"VerfasserIn","display":"Rüland, Angkana","given":"Angkana","family":"Rüland"},{"role":"aut","roleDisplay":"VerfasserIn","display":"Shi, Wenhui","given":"Wenhui","family":"Shi"}]} | ||
| SRT | |a KOCHHERBERVARIABLECO2017 | ||