The variable coefficient thin obstacle problem: higher regularity

In this article we continue our investigation of the thin obstacle problem with variable coefficients which was initiated in \cite{KRS14}, \cite{KRSI}. Using a partial Hodograph-Legendre transform and the implicit function theorem, we prove higher order H\"older regularity for the regular free...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Koch, Herbert (VerfasserIn) , Rüland, Angkana (VerfasserIn) , Shi, Wenhui (VerfasserIn)
Dokumenttyp: Article (Journal) Kapitel/Artikel
Sprache:Englisch
Veröffentlicht: 6 May 2016
In: Arxiv
Year: 2016, Pages: 1-74
Online-Zugang:Verlag, lizenzpflichtig, Volltext: http://arxiv.org/abs/1605.02002
Volltext
Verfasserangaben:Herbert Koch, Angkana Rüland, and Wenhui Shi

MARC

LEADER 00000caa a2200000 c 4500
001 1759071285
003 DE-627
005 20220819215630.0
007 cr uuu---uuuuu
008 210527s2016 xx |||||o 00| ||eng c
035 |a (DE-627)1759071285 
035 |a (DE-599)KXP1759071285 
035 |a (OCoLC)1341414757 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 27  |2 sdnb 
100 1 |a Koch, Herbert  |d 1962-  |e VerfasserIn  |0 (DE-588)140473734  |0 (DE-627)703686720  |0 (DE-576)31824246X  |4 aut 
245 1 4 |a The variable coefficient thin obstacle problem  |b higher regularity  |c Herbert Koch, Angkana Rüland, and Wenhui Shi 
264 1 |c 6 May 2016 
300 |a 74 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 27.05.2021 
520 |a In this article we continue our investigation of the thin obstacle problem with variable coefficients which was initiated in \cite{KRS14}, \cite{KRSI}. Using a partial Hodograph-Legendre transform and the implicit function theorem, we prove higher order H\"older regularity for the regular free boundary, if the associated coefficients are of the corresponding regularity. For the zero obstacle this yields an improvement of a \emph{full derivative} for the free boundary regularity compared to the regularity of the metric. In the presence of non-zero obstacles or inhomogeneities, we gain \emph{three halves of a derivative} for the free boundary regularity with respect to the regularity of the inhomogeneity. Further we show analyticity of the regular free boundary for analytic metrics. We also discuss the low regularity set-up of $W^{1,p}$ metrics with $p>n+1$ with and without ($L^p$) inhomogeneities. Key new ingredients in our analysis are the introduction of generalized H\"older spaces, which allow to interpret the transformed fully nonlinear, degenerate (sub)elliptic equation as a perturbation of the Baouendi-Grushin operator, various uses of intrinsic geometries associated with appropriate operators, the application of the implicit function theorem to deduce (higher) regularity and the splitting technique from \cite{KRSI}. 
650 4 |a Mathematics - Analysis of PDEs 
700 1 |a Rüland, Angkana  |d 1987-  |e VerfasserIn  |0 (DE-588)1051987679  |0 (DE-627)787342378  |0 (DE-576)407655506  |4 aut 
700 1 |a Shi, Wenhui  |e VerfasserIn  |0 (DE-588)1234116103  |0 (DE-627)175899181X  |4 aut 
773 0 8 |i Enthalten in  |t Arxiv  |d Ithaca, NY : Cornell University, 1991  |g (2016), Artikel-ID 1605.02002, Seite 1-74  |h Online-Ressource  |w (DE-627)509006531  |w (DE-600)2225896-6  |w (DE-576)28130436X  |7 nnas  |a The variable coefficient thin obstacle problem higher regularity 
773 1 8 |g year:2016  |g elocationid:1605.02002  |g pages:1-74  |g extent:74  |a The variable coefficient thin obstacle problem higher regularity 
856 4 0 |u http://arxiv.org/abs/1605.02002  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20210527 
993 |a Article 
994 |a 2016 
998 |g 1051987679  |a Rüland, Angkana  |m 1051987679:Rüland, Angkana  |p 2 
999 |a KXP-PPN1759071285  |e 3931838226 
BIB |a Y 
JSO |a {"note":["Gesehen am 27.05.2021"],"type":{"bibl":"chapter","media":"Online-Ressource"},"language":["eng"],"recId":"1759071285","person":[{"given":"Herbert","family":"Koch","role":"aut","roleDisplay":"VerfasserIn","display":"Koch, Herbert"},{"given":"Angkana","family":"Rüland","role":"aut","roleDisplay":"VerfasserIn","display":"Rüland, Angkana"},{"family":"Shi","given":"Wenhui","roleDisplay":"VerfasserIn","display":"Shi, Wenhui","role":"aut"}],"title":[{"subtitle":"higher regularity","title":"The variable coefficient thin obstacle problem","title_sort":"variable coefficient thin obstacle problem"}],"physDesc":[{"extent":"74 S."}],"relHost":[{"recId":"509006531","language":["eng"],"disp":"The variable coefficient thin obstacle problem higher regularityArxiv","type":{"media":"Online-Ressource","bibl":"edited-book"},"note":["Gesehen am 28.05.2024"],"titleAlt":[{"title":"Arxiv.org"},{"title":"Arxiv.org e-print archive"},{"title":"Arxiv e-print archive"},{"title":"De.arxiv.org"}],"part":{"extent":"74","text":"(2016), Artikel-ID 1605.02002, Seite 1-74","pages":"1-74","year":"2016"},"pubHistory":["1991 -"],"title":[{"title_sort":"Arxiv","title":"Arxiv"}],"physDesc":[{"extent":"Online-Ressource"}],"id":{"zdb":["2225896-6"],"eki":["509006531"]},"origin":[{"publisher":"Cornell University ; Arxiv.org","dateIssuedKey":"1991","dateIssuedDisp":"1991-","publisherPlace":"Ithaca, NY ; [Erscheinungsort nicht ermittelbar]"}]}],"name":{"displayForm":["Herbert Koch, Angkana Rüland, and Wenhui Shi"]},"origin":[{"dateIssuedDisp":"6 May 2016","dateIssuedKey":"2016"}],"id":{"eki":["1759071285"]}} 
SRT |a KOCHHERBERVARIABLECO6201