The variable coefficient thin obstacle problem: optimal regularity and regularity of the regular free boundary

This article deals with the variable coefficient thin obstacle problem in $n+1$ dimensions. We address the regular free boundary regularity, the behavior of the solution close to the free boundary and the optimal regularity of the solution in a low regularity set-up. We first discuss the case of zer...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Koch, Herbert (VerfasserIn) , Rüland, Angkana (VerfasserIn) , Shi, Wenhui (VerfasserIn)
Dokumenttyp: Article (Journal) Kapitel/Artikel
Sprache:Englisch
Veröffentlicht: 14 Apr 2015
In: Arxiv
Year: 2015, Pages: 1-62
Online-Zugang:Verlag, lizenzpflichtig, Volltext: http://arxiv.org/abs/1504.03525
Volltext
Verfasserangaben:Herbert Koch, Angkana Rüland, and Wenhui Shi

MARC

LEADER 00000caa a2200000 c 4500
001 1759074667
003 DE-627
005 20220819215658.0
007 cr uuu---uuuuu
008 210527s2015 xx |||||o 00| ||eng c
035 |a (DE-627)1759074667 
035 |a (DE-599)KXP1759074667 
035 |a (OCoLC)1341414791 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 27  |2 sdnb 
100 1 |a Koch, Herbert  |d 1962-  |e VerfasserIn  |0 (DE-588)140473734  |0 (DE-627)703686720  |0 (DE-576)31824246X  |4 aut 
245 1 4 |a The variable coefficient thin obstacle problem  |b optimal regularity and regularity of the regular free boundary  |c Herbert Koch, Angkana Rüland, and Wenhui Shi 
264 1 |c 14 Apr 2015 
300 |a 62 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Last revised 22 Mar 2016 (v3) 
500 |a Gesehen am 27.05.2021 
520 |a This article deals with the variable coefficient thin obstacle problem in $n+1$ dimensions. We address the regular free boundary regularity, the behavior of the solution close to the free boundary and the optimal regularity of the solution in a low regularity set-up. We first discuss the case of zero obstacle and $W^{1,p}$ metrics with $p\in(n+1,\infty]$. In this framework, we prove the $C^{1,\alpha}$ regularity of the regular free boundary and derive the leading order asymptotic expansion of solutions at regular free boundary points. We further show the optimal $C^{1,\min\{1-\frac{n+1}{p}, \frac{1}{2}\}}$ regularity of solutions. New ingredients include the use of the Reifenberg flatness of the regular free boundary, the construction of an (almost) optimal barrier function and the introduction of an appropriate splitting of the solution. Important insights depend on the consideration of various intrinsic geometric structures. Based on variations of the arguments in \cite{KRS14} and the present article, we then also discuss the case of non-zero and interior thin obstacles. We obtain the optimal regularity of the solutions and the regularity of the regular free boundary for $W^{1,p}$ metrics and $W^{2,p}$ obstacles with $p\in (2(n+1),\infty]$. 
650 4 |a Mathematics - Analysis of PDEs 
700 1 |a Rüland, Angkana  |d 1987-  |e VerfasserIn  |0 (DE-588)1051987679  |0 (DE-627)787342378  |0 (DE-576)407655506  |4 aut 
700 1 |a Shi, Wenhui  |e VerfasserIn  |0 (DE-588)1234116103  |0 (DE-627)175899181X  |4 aut 
773 0 8 |i Enthalten in  |t Arxiv  |d Ithaca, NY : Cornell University, 1991  |g (2015), Artikel-ID 1504.03525, Seite 1-62  |h Online-Ressource  |w (DE-627)509006531  |w (DE-600)2225896-6  |w (DE-576)28130436X  |7 nnas  |a The variable coefficient thin obstacle problem optimal regularity and regularity of the regular free boundary 
773 1 8 |g year:2015  |g elocationid:1504.03525  |g pages:1-62  |g extent:62  |a The variable coefficient thin obstacle problem optimal regularity and regularity of the regular free boundary 
856 4 0 |u http://arxiv.org/abs/1504.03525  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20210527 
993 |a Article 
994 |a 2015 
998 |g 1051987679  |a Rüland, Angkana  |m 1051987679:Rüland, Angkana  |p 2 
999 |a KXP-PPN1759074667  |e 3931847381 
BIB |a Y 
JSO |a {"origin":[{"dateIssuedKey":"2015","dateIssuedDisp":"14 Apr 2015"}],"id":{"eki":["1759074667"]},"name":{"displayForm":["Herbert Koch, Angkana Rüland, and Wenhui Shi"]},"physDesc":[{"extent":"62 S."}],"relHost":[{"title":[{"title":"Arxiv","title_sort":"Arxiv"}],"disp":"The variable coefficient thin obstacle problem optimal regularity and regularity of the regular free boundaryArxiv","type":{"media":"Online-Ressource","bibl":"edited-book"},"note":["Gesehen am 28.05.2024"],"recId":"509006531","language":["eng"],"pubHistory":["1991 -"],"titleAlt":[{"title":"Arxiv.org"},{"title":"Arxiv.org e-print archive"},{"title":"Arxiv e-print archive"},{"title":"De.arxiv.org"}],"part":{"text":"(2015), Artikel-ID 1504.03525, Seite 1-62","extent":"62","year":"2015","pages":"1-62"},"origin":[{"publisherPlace":"Ithaca, NY ; [Erscheinungsort nicht ermittelbar]","publisher":"Cornell University ; Arxiv.org","dateIssuedKey":"1991","dateIssuedDisp":"1991-"}],"id":{"zdb":["2225896-6"],"eki":["509006531"]},"physDesc":[{"extent":"Online-Ressource"}]}],"title":[{"subtitle":"optimal regularity and regularity of the regular free boundary","title":"The variable coefficient thin obstacle problem","title_sort":"variable coefficient thin obstacle problem"}],"person":[{"roleDisplay":"VerfasserIn","display":"Koch, Herbert","role":"aut","family":"Koch","given":"Herbert"},{"given":"Angkana","family":"Rüland","role":"aut","roleDisplay":"VerfasserIn","display":"Rüland, Angkana"},{"given":"Wenhui","family":"Shi","role":"aut","display":"Shi, Wenhui","roleDisplay":"VerfasserIn"}],"note":["Last revised 22 Mar 2016 (v3)","Gesehen am 27.05.2021"],"type":{"bibl":"chapter","media":"Online-Ressource"},"recId":"1759074667","language":["eng"]} 
SRT |a KOCHHERBERVARIABLECO1420