The variable coefficient thin obstacle problem: optimal regularity and regularity of the regular free boundary
This article deals with the variable coefficient thin obstacle problem in $n+1$ dimensions. We address the regular free boundary regularity, the behavior of the solution close to the free boundary and the optimal regularity of the solution in a low regularity set-up. We first discuss the case of zer...
Gespeichert in:
| Hauptverfasser: | , , |
|---|---|
| Dokumenttyp: | Article (Journal) Kapitel/Artikel |
| Sprache: | Englisch |
| Veröffentlicht: |
14 Apr 2015
|
| In: |
Arxiv
Year: 2015, Pages: 1-62 |
| Online-Zugang: | Verlag, lizenzpflichtig, Volltext: http://arxiv.org/abs/1504.03525 |
| Verfasserangaben: | Herbert Koch, Angkana Rüland, and Wenhui Shi |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1759074667 | ||
| 003 | DE-627 | ||
| 005 | 20220819215658.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 210527s2015 xx |||||o 00| ||eng c | ||
| 035 | |a (DE-627)1759074667 | ||
| 035 | |a (DE-599)KXP1759074667 | ||
| 035 | |a (OCoLC)1341414791 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 27 |2 sdnb | ||
| 100 | 1 | |a Koch, Herbert |d 1962- |e VerfasserIn |0 (DE-588)140473734 |0 (DE-627)703686720 |0 (DE-576)31824246X |4 aut | |
| 245 | 1 | 4 | |a The variable coefficient thin obstacle problem |b optimal regularity and regularity of the regular free boundary |c Herbert Koch, Angkana Rüland, and Wenhui Shi |
| 264 | 1 | |c 14 Apr 2015 | |
| 300 | |a 62 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Last revised 22 Mar 2016 (v3) | ||
| 500 | |a Gesehen am 27.05.2021 | ||
| 520 | |a This article deals with the variable coefficient thin obstacle problem in $n+1$ dimensions. We address the regular free boundary regularity, the behavior of the solution close to the free boundary and the optimal regularity of the solution in a low regularity set-up. We first discuss the case of zero obstacle and $W^{1,p}$ metrics with $p\in(n+1,\infty]$. In this framework, we prove the $C^{1,\alpha}$ regularity of the regular free boundary and derive the leading order asymptotic expansion of solutions at regular free boundary points. We further show the optimal $C^{1,\min\{1-\frac{n+1}{p}, \frac{1}{2}\}}$ regularity of solutions. New ingredients include the use of the Reifenberg flatness of the regular free boundary, the construction of an (almost) optimal barrier function and the introduction of an appropriate splitting of the solution. Important insights depend on the consideration of various intrinsic geometric structures. Based on variations of the arguments in \cite{KRS14} and the present article, we then also discuss the case of non-zero and interior thin obstacles. We obtain the optimal regularity of the solutions and the regularity of the regular free boundary for $W^{1,p}$ metrics and $W^{2,p}$ obstacles with $p\in (2(n+1),\infty]$. | ||
| 650 | 4 | |a Mathematics - Analysis of PDEs | |
| 700 | 1 | |a Rüland, Angkana |d 1987- |e VerfasserIn |0 (DE-588)1051987679 |0 (DE-627)787342378 |0 (DE-576)407655506 |4 aut | |
| 700 | 1 | |a Shi, Wenhui |e VerfasserIn |0 (DE-588)1234116103 |0 (DE-627)175899181X |4 aut | |
| 773 | 0 | 8 | |i Enthalten in |t Arxiv |d Ithaca, NY : Cornell University, 1991 |g (2015), Artikel-ID 1504.03525, Seite 1-62 |h Online-Ressource |w (DE-627)509006531 |w (DE-600)2225896-6 |w (DE-576)28130436X |7 nnas |a The variable coefficient thin obstacle problem optimal regularity and regularity of the regular free boundary |
| 773 | 1 | 8 | |g year:2015 |g elocationid:1504.03525 |g pages:1-62 |g extent:62 |a The variable coefficient thin obstacle problem optimal regularity and regularity of the regular free boundary |
| 856 | 4 | 0 | |u http://arxiv.org/abs/1504.03525 |x Verlag |z lizenzpflichtig |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20210527 | ||
| 993 | |a Article | ||
| 994 | |a 2015 | ||
| 998 | |g 1051987679 |a Rüland, Angkana |m 1051987679:Rüland, Angkana |p 2 | ||
| 999 | |a KXP-PPN1759074667 |e 3931847381 | ||
| BIB | |a Y | ||
| JSO | |a {"origin":[{"dateIssuedKey":"2015","dateIssuedDisp":"14 Apr 2015"}],"id":{"eki":["1759074667"]},"name":{"displayForm":["Herbert Koch, Angkana Rüland, and Wenhui Shi"]},"physDesc":[{"extent":"62 S."}],"relHost":[{"title":[{"title":"Arxiv","title_sort":"Arxiv"}],"disp":"The variable coefficient thin obstacle problem optimal regularity and regularity of the regular free boundaryArxiv","type":{"media":"Online-Ressource","bibl":"edited-book"},"note":["Gesehen am 28.05.2024"],"recId":"509006531","language":["eng"],"pubHistory":["1991 -"],"titleAlt":[{"title":"Arxiv.org"},{"title":"Arxiv.org e-print archive"},{"title":"Arxiv e-print archive"},{"title":"De.arxiv.org"}],"part":{"text":"(2015), Artikel-ID 1504.03525, Seite 1-62","extent":"62","year":"2015","pages":"1-62"},"origin":[{"publisherPlace":"Ithaca, NY ; [Erscheinungsort nicht ermittelbar]","publisher":"Cornell University ; Arxiv.org","dateIssuedKey":"1991","dateIssuedDisp":"1991-"}],"id":{"zdb":["2225896-6"],"eki":["509006531"]},"physDesc":[{"extent":"Online-Ressource"}]}],"title":[{"subtitle":"optimal regularity and regularity of the regular free boundary","title":"The variable coefficient thin obstacle problem","title_sort":"variable coefficient thin obstacle problem"}],"person":[{"roleDisplay":"VerfasserIn","display":"Koch, Herbert","role":"aut","family":"Koch","given":"Herbert"},{"given":"Angkana","family":"Rüland","role":"aut","roleDisplay":"VerfasserIn","display":"Rüland, Angkana"},{"given":"Wenhui","family":"Shi","role":"aut","display":"Shi, Wenhui","roleDisplay":"VerfasserIn"}],"note":["Last revised 22 Mar 2016 (v3)","Gesehen am 27.05.2021"],"type":{"bibl":"chapter","media":"Online-Ressource"},"recId":"1759074667","language":["eng"]} | ||
| SRT | |a KOCHHERBERVARIABLECO1420 | ||