On some quantitative unique continuation properties of fractional Schrödinger equations: doubling, vanishing order and nodal domain estimates
In this article we determine bounds on the maximal order of vanishing for eigenfunctions of a generalized Dirichlet-to-Neumann map (which is associated with fractional Schr\"odinger equations) on a compact, smooth Riemannian manifold, $(M,g)$, without boundary. Moreover, with only slight modifi...
Gespeichert in:
| 1. Verfasser: | |
|---|---|
| Dokumenttyp: | Article (Journal) Kapitel/Artikel |
| Sprache: | Englisch |
| Veröffentlicht: |
3 Jul 2014
|
| In: |
Arxiv
Year: 2014, Pages: 1-38 |
| Online-Zugang: | Verlag, lizenzpflichtig, Volltext: http://arxiv.org/abs/1407.0817 |
| Verfasserangaben: | Angkana Rüland |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1759078360 | ||
| 003 | DE-627 | ||
| 005 | 20220819215732.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 210527s2014 xx |||||o 00| ||eng c | ||
| 035 | |a (DE-627)1759078360 | ||
| 035 | |a (DE-599)KXP1759078360 | ||
| 035 | |a (OCoLC)1341414738 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 27 |2 sdnb | ||
| 100 | 1 | |a Rüland, Angkana |d 1987- |e VerfasserIn |0 (DE-588)1051987679 |0 (DE-627)787342378 |0 (DE-576)407655506 |4 aut | |
| 245 | 1 | 0 | |a On some quantitative unique continuation properties of fractional Schrödinger equations |b doubling, vanishing order and nodal domain estimates |c Angkana Rüland |
| 264 | 1 | |c 3 Jul 2014 | |
| 300 | |a 38 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Gesehen am 27.05.2021 | ||
| 520 | |a In this article we determine bounds on the maximal order of vanishing for eigenfunctions of a generalized Dirichlet-to-Neumann map (which is associated with fractional Schr\"odinger equations) on a compact, smooth Riemannian manifold, $(M,g)$, without boundary. Moreover, with only slight modifications these results generalize to equations with $C^1$ potentials. Here Carleman estimates are a key tool. These yield a quantitative three balls inequality which implies quantitative bulk and boundary doubling estimates and hence leads to the control of the maximal order of vanishing. Using the boundary doubling property, we prove upper bounds on the $\mathcal{H}^{n-1}$-measure of nodal domains of eigenfunctions of the generalized Dirichlet-to-Neumann map on analytic manifolds. | ||
| 650 | 4 | |a Mathematics - Analysis of PDEs | |
| 773 | 0 | 8 | |i Enthalten in |t Arxiv |d Ithaca, NY : Cornell University, 1991 |g (2014), Artikel-ID 1407.0817, Seite 1-38 |h Online-Ressource |w (DE-627)509006531 |w (DE-600)2225896-6 |w (DE-576)28130436X |7 nnas |a On some quantitative unique continuation properties of fractional Schrödinger equations doubling, vanishing order and nodal domain estimates |
| 773 | 1 | 8 | |g year:2014 |g elocationid:1407.0817 |g pages:1-38 |g extent:38 |a On some quantitative unique continuation properties of fractional Schrödinger equations doubling, vanishing order and nodal domain estimates |
| 856 | 4 | 0 | |u http://arxiv.org/abs/1407.0817 |x Verlag |z lizenzpflichtig |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20210527 | ||
| 993 | |a Article | ||
| 994 | |a 2014 | ||
| 998 | |g 1051987679 |a Rüland, Angkana |m 1051987679:Rüland, Angkana |p 1 |x j |y j | ||
| 999 | |a KXP-PPN1759078360 |e 3931855708 | ||
| BIB | |a Y | ||
| JSO | |a {"origin":[{"dateIssuedDisp":"3 Jul 2014","dateIssuedKey":"2014"}],"id":{"eki":["1759078360"]},"name":{"displayForm":["Angkana Rüland"]},"physDesc":[{"extent":"38 S."}],"relHost":[{"physDesc":[{"extent":"Online-Ressource"}],"origin":[{"publisherPlace":"Ithaca, NY ; [Erscheinungsort nicht ermittelbar]","publisher":"Cornell University ; Arxiv.org","dateIssuedKey":"1991","dateIssuedDisp":"1991-"}],"id":{"eki":["509006531"],"zdb":["2225896-6"]},"pubHistory":["1991 -"],"part":{"extent":"38","text":"(2014), Artikel-ID 1407.0817, Seite 1-38","pages":"1-38","year":"2014"},"titleAlt":[{"title":"Arxiv.org"},{"title":"Arxiv.org e-print archive"},{"title":"Arxiv e-print archive"},{"title":"De.arxiv.org"}],"note":["Gesehen am 28.05.2024"],"disp":"On some quantitative unique continuation properties of fractional Schrödinger equations doubling, vanishing order and nodal domain estimatesArxiv","type":{"bibl":"edited-book","media":"Online-Ressource"},"recId":"509006531","language":["eng"],"title":[{"title":"Arxiv","title_sort":"Arxiv"}]}],"title":[{"title_sort":"On some quantitative unique continuation properties of fractional Schrödinger equations","subtitle":"doubling, vanishing order and nodal domain estimates","title":"On some quantitative unique continuation properties of fractional Schrödinger equations"}],"person":[{"roleDisplay":"VerfasserIn","display":"Rüland, Angkana","role":"aut","family":"Rüland","given":"Angkana"}],"type":{"bibl":"chapter","media":"Online-Ressource"},"note":["Gesehen am 27.05.2021"],"language":["eng"],"recId":"1759078360"} | ||
| SRT | |a RUELANDANGONSOMEQUAN3201 | ||