On some quantitative unique continuation properties of fractional Schrödinger equations: doubling, vanishing order and nodal domain estimates

In this article we determine bounds on the maximal order of vanishing for eigenfunctions of a generalized Dirichlet-to-Neumann map (which is associated with fractional Schr\"odinger equations) on a compact, smooth Riemannian manifold, $(M,g)$, without boundary. Moreover, with only slight modifi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Rüland, Angkana (VerfasserIn)
Dokumenttyp: Article (Journal) Kapitel/Artikel
Sprache:Englisch
Veröffentlicht: 3 Jul 2014
In: Arxiv
Year: 2014, Pages: 1-38
Online-Zugang:Verlag, lizenzpflichtig, Volltext: http://arxiv.org/abs/1407.0817
Volltext
Verfasserangaben:Angkana Rüland

MARC

LEADER 00000caa a2200000 c 4500
001 1759078360
003 DE-627
005 20220819215732.0
007 cr uuu---uuuuu
008 210527s2014 xx |||||o 00| ||eng c
035 |a (DE-627)1759078360 
035 |a (DE-599)KXP1759078360 
035 |a (OCoLC)1341414738 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 27  |2 sdnb 
100 1 |a Rüland, Angkana  |d 1987-  |e VerfasserIn  |0 (DE-588)1051987679  |0 (DE-627)787342378  |0 (DE-576)407655506  |4 aut 
245 1 0 |a On some quantitative unique continuation properties of fractional Schrödinger equations  |b doubling, vanishing order and nodal domain estimates  |c Angkana Rüland 
264 1 |c 3 Jul 2014 
300 |a 38 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 27.05.2021 
520 |a In this article we determine bounds on the maximal order of vanishing for eigenfunctions of a generalized Dirichlet-to-Neumann map (which is associated with fractional Schr\"odinger equations) on a compact, smooth Riemannian manifold, $(M,g)$, without boundary. Moreover, with only slight modifications these results generalize to equations with $C^1$ potentials. Here Carleman estimates are a key tool. These yield a quantitative three balls inequality which implies quantitative bulk and boundary doubling estimates and hence leads to the control of the maximal order of vanishing. Using the boundary doubling property, we prove upper bounds on the $\mathcal{H}^{n-1}$-measure of nodal domains of eigenfunctions of the generalized Dirichlet-to-Neumann map on analytic manifolds. 
650 4 |a Mathematics - Analysis of PDEs 
773 0 8 |i Enthalten in  |t Arxiv  |d Ithaca, NY : Cornell University, 1991  |g (2014), Artikel-ID 1407.0817, Seite 1-38  |h Online-Ressource  |w (DE-627)509006531  |w (DE-600)2225896-6  |w (DE-576)28130436X  |7 nnas  |a On some quantitative unique continuation properties of fractional Schrödinger equations doubling, vanishing order and nodal domain estimates 
773 1 8 |g year:2014  |g elocationid:1407.0817  |g pages:1-38  |g extent:38  |a On some quantitative unique continuation properties of fractional Schrödinger equations doubling, vanishing order and nodal domain estimates 
856 4 0 |u http://arxiv.org/abs/1407.0817  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20210527 
993 |a Article 
994 |a 2014 
998 |g 1051987679  |a Rüland, Angkana  |m 1051987679:Rüland, Angkana  |p 1  |x j  |y j 
999 |a KXP-PPN1759078360  |e 3931855708 
BIB |a Y 
JSO |a {"origin":[{"dateIssuedDisp":"3 Jul 2014","dateIssuedKey":"2014"}],"id":{"eki":["1759078360"]},"name":{"displayForm":["Angkana Rüland"]},"physDesc":[{"extent":"38 S."}],"relHost":[{"physDesc":[{"extent":"Online-Ressource"}],"origin":[{"publisherPlace":"Ithaca, NY ; [Erscheinungsort nicht ermittelbar]","publisher":"Cornell University ; Arxiv.org","dateIssuedKey":"1991","dateIssuedDisp":"1991-"}],"id":{"eki":["509006531"],"zdb":["2225896-6"]},"pubHistory":["1991 -"],"part":{"extent":"38","text":"(2014), Artikel-ID 1407.0817, Seite 1-38","pages":"1-38","year":"2014"},"titleAlt":[{"title":"Arxiv.org"},{"title":"Arxiv.org e-print archive"},{"title":"Arxiv e-print archive"},{"title":"De.arxiv.org"}],"note":["Gesehen am 28.05.2024"],"disp":"On some quantitative unique continuation properties of fractional Schrödinger equations doubling, vanishing order and nodal domain estimatesArxiv","type":{"bibl":"edited-book","media":"Online-Ressource"},"recId":"509006531","language":["eng"],"title":[{"title":"Arxiv","title_sort":"Arxiv"}]}],"title":[{"title_sort":"On some quantitative unique continuation properties of fractional Schrödinger equations","subtitle":"doubling, vanishing order and nodal domain estimates","title":"On some quantitative unique continuation properties of fractional Schrödinger equations"}],"person":[{"roleDisplay":"VerfasserIn","display":"Rüland, Angkana","role":"aut","family":"Rüland","given":"Angkana"}],"type":{"bibl":"chapter","media":"Online-Ressource"},"note":["Gesehen am 27.05.2021"],"language":["eng"],"recId":"1759078360"} 
SRT |a RUELANDANGONSOMEQUAN3201