A rigidity result for a reduced model of a cubic-to-orthorhombic phase transition in the geometrically linear theory of elasticity
We study a simplified two-dimensional model for a cubic-to-orthorhombic phase transition occuring in certain shape-memory-alloys. In the low temperature regime the linear theory of elasticity predicts various possible patterns of martensite arrangements: Apart from the well known laminates this phas...
Gespeichert in:
| 1. Verfasser: | |
|---|---|
| Dokumenttyp: | Article (Journal) Kapitel/Artikel |
| Sprache: | Englisch |
| Veröffentlicht: |
27 May 2013
|
| In: |
Arxiv
Year: 2013, Pages: 1-39 |
| DOI: | 10.1007/s10659-015-9553-2 |
| Online-Zugang: | Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1007/s10659-015-9553-2 Verlag, lizenzpflichtig, Volltext: http://arxiv.org/abs/1305.6200 |
| Verfasserangaben: | Angkana Rüland |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1759084670 | ||
| 003 | DE-627 | ||
| 005 | 20220819215810.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 210527s2013 xx |||||o 00| ||eng c | ||
| 035 | |a (DE-627)1759084670 | ||
| 035 | |a (DE-599)KXP1759084670 | ||
| 035 | |a (OCoLC)1341414537 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 27 |2 sdnb | ||
| 100 | 1 | |a Rüland, Angkana |d 1987- |e VerfasserIn |0 (DE-588)1051987679 |0 (DE-627)787342378 |0 (DE-576)407655506 |4 aut | |
| 245 | 1 | 2 | |a A rigidity result for a reduced model of a cubic-to-orthorhombic phase transition in the geometrically linear theory of elasticity |c Angkana Rüland |
| 264 | 1 | |c 27 May 2013 | |
| 300 | |a 39 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Gesehen am 27.05.2021 | ||
| 520 | |a We study a simplified two-dimensional model for a cubic-to-orthorhombic phase transition occuring in certain shape-memory-alloys. In the low temperature regime the linear theory of elasticity predicts various possible patterns of martensite arrangements: Apart from the well known laminates this phase transition displays additional structures involving four martensitic variants -- so called crossing twins. Introducing a variational model including surface energy, we show that these structures are rigid under small energy perturbations. Combined with an upper bound construction this gives the optimal scaling behavior of incompatible microstructures. These results are related to papers by Capella and Otto as well as to a paper by Dolzmann and M\"uller. | ||
| 650 | 4 | |a Mathematics - Analysis of PDEs | |
| 773 | 0 | 8 | |i Enthalten in |t Arxiv |d Ithaca, NY : Cornell University, 1991 |g (2013), Artikel-ID 1305.6200, Seite 1-39 |h Online-Ressource |w (DE-627)509006531 |w (DE-600)2225896-6 |w (DE-576)28130436X |7 nnas |a A rigidity result for a reduced model of a cubic-to-orthorhombic phase transition in the geometrically linear theory of elasticity |
| 773 | 1 | 8 | |g year:2013 |g elocationid:1305.6200 |g pages:1-39 |g extent:39 |a A rigidity result for a reduced model of a cubic-to-orthorhombic phase transition in the geometrically linear theory of elasticity |
| 856 | 4 | 0 | |u https://doi.org/10.1007/s10659-015-9553-2 |x Verlag |x Resolving-System |z lizenzpflichtig |3 Volltext |
| 856 | 4 | 0 | |u http://arxiv.org/abs/1305.6200 |x Verlag |z lizenzpflichtig |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20210527 | ||
| 993 | |a Article | ||
| 994 | |a 2013 | ||
| 998 | |g 1051987679 |a Rüland, Angkana |m 1051987679:Rüland, Angkana |p 1 |x j |y j | ||
| 999 | |a KXP-PPN1759084670 |e 3931864693 | ||
| BIB | |a Y | ||
| JSO | |a {"relHost":[{"physDesc":[{"extent":"Online-Ressource"}],"id":{"zdb":["2225896-6"],"eki":["509006531"]},"origin":[{"publisherPlace":"Ithaca, NY ; [Erscheinungsort nicht ermittelbar]","publisher":"Cornell University ; Arxiv.org","dateIssuedKey":"1991","dateIssuedDisp":"1991-"}],"language":["eng"],"recId":"509006531","note":["Gesehen am 28.05.2024"],"disp":"A rigidity result for a reduced model of a cubic-to-orthorhombic phase transition in the geometrically linear theory of elasticityArxiv","type":{"media":"Online-Ressource","bibl":"edited-book"},"titleAlt":[{"title":"Arxiv.org"},{"title":"Arxiv.org e-print archive"},{"title":"Arxiv e-print archive"},{"title":"De.arxiv.org"}],"part":{"text":"(2013), Artikel-ID 1305.6200, Seite 1-39","extent":"39","year":"2013","pages":"1-39"},"pubHistory":["1991 -"],"title":[{"title_sort":"Arxiv","title":"Arxiv"}]}],"physDesc":[{"extent":"39 S."}],"name":{"displayForm":["Angkana Rüland"]},"id":{"eki":["1759084670"]},"origin":[{"dateIssuedKey":"2013","dateIssuedDisp":"27 May 2013"}],"language":["eng"],"recId":"1759084670","note":["Gesehen am 27.05.2021"],"type":{"bibl":"chapter","media":"Online-Ressource"},"person":[{"family":"Rüland","given":"Angkana","roleDisplay":"VerfasserIn","display":"Rüland, Angkana","role":"aut"}],"title":[{"title":"A rigidity result for a reduced model of a cubic-to-orthorhombic phase transition in the geometrically linear theory of elasticity","title_sort":"rigidity result for a reduced model of a cubic-to-orthorhombic phase transition in the geometrically linear theory of elasticity"}]} | ||
| SRT | |a RUELANDANGRIGIDITYRE2720 | ||