Runge approximation and stability improvement for a partial data Calderón problem for the acoustic Helmholtz equation

In this article, we discuss quantitative Runge approximation properties for the acoustic Helmholtz equation and prove stability improvement results in the high frequency limit for an associated partial data inverse problem modelled on \cite{AU04, KU19}. The results rely on quantitative unique contin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: García-Ferrero, María Ángeles (VerfasserIn) , Rüland, Angkana (VerfasserIn) , Zatoń, Wiktoria (VerfasserIn)
Dokumenttyp: Article (Journal) Kapitel/Artikel
Sprache:Englisch
Veröffentlicht: 11 Jan 2021
In: Arxiv
Year: 2021, Pages: 1-28
Online-Zugang:Verlag, lizenzpflichtig, Volltext: http://arxiv.org/abs/2101.04089
Volltext
Verfasserangaben:María Ángeles García-Ferrero, Angkana Rüland, and Wiktoria Zatoń
Beschreibung
Zusammenfassung:In this article, we discuss quantitative Runge approximation properties for the acoustic Helmholtz equation and prove stability improvement results in the high frequency limit for an associated partial data inverse problem modelled on \cite{AU04, KU19}. The results rely on quantitative unique continuation estimates in suitable function spaces with explicit frequency dependence. We contrast the frequency dependence of interior Runge approximation results from non-convex and convex sets.
Beschreibung:Gesehen am 27.05.2021
Beschreibung:Online Resource