Geometry of bounded critical phenomena

The quest for a satisfactory understanding of systems at criticality in dimensionsd> 2 is a major field of research. We devise here a geometric description of bounded systems at criticality in any dimensiond. This is achieved by altering the flat metric with a space dependent scale factor gamma(x...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Gori, Giacomo (VerfasserIn) , Trombettoni, Andrea (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 16 June 2020
In: Journal of statistical mechanics: theory and experiment
Year: 2020, Heft: 6, Pages: 1-27
ISSN:1742-5468
DOI:10.1088/1742-5468/ab7f32
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1088/1742-5468/ab7f32
Volltext
Verfasserangaben:Giacomo Gori, Andrea Trombettoni

MARC

LEADER 00000caa a2200000 c 4500
001 1759330469
003 DE-627
005 20220819220845.0
007 cr uuu---uuuuu
008 210601s2020 xx |||||o 00| ||eng c
024 7 |a 10.1088/1742-5468/ab7f32  |2 doi 
035 |a (DE-627)1759330469 
035 |a (DE-599)KXP1759330469 
035 |a (OCoLC)1341414734 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 29  |2 sdnb 
100 1 |a Gori, Giacomo  |e VerfasserIn  |0 (DE-588)1234499363  |0 (DE-627)1759331988  |4 aut 
245 1 0 |a Geometry of bounded critical phenomena  |c Giacomo Gori, Andrea Trombettoni 
264 1 |c 16 June 2020 
300 |a 27 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 01.06.2021 
520 |a The quest for a satisfactory understanding of systems at criticality in dimensionsd> 2 is a major field of research. We devise here a geometric description of bounded systems at criticality in any dimensiond. This is achieved by altering the flat metric with a space dependent scale factor gamma(x),xbelonging to a bounded domain omega.gamma(x) is chosen in order to have a scalar curvature to be constant and matching the one of the hyperbolic space, the proper notion of curvature being-as called in the mathematics literature-the fractionalQ-curvature. The equation for gamma(x) is found to be the fractional Yamabe equation (to be solved in omega) that, in absence of anomalous dimension, reduces to the usual Yamabe equation in the same domain. From the scale factor gamma(x) we obtain novel predictions for the scaling form of one-point order parameter correlation functions. A (necessary) virtue of the proposed approach is that it encodes and allows to naturally retrieve the purely geometric content of two-dimensional boundary conformal field theory. From the critical magnetization profile in presence of boundaries one can extract the scaling dimension of the order parameter, Delta(phi). For the 3D Ising model we find Delta(phi)= 0.518 142(8) which favorably compares (at the fifth decimal place) with the state-of-the-art estimate. A nontrivial prediction is the structure of two-point spin-spin correlators at criticality. They should depend on the fractionalQ-hyperbolic distance calculated from the metric, in turn depending only on the shape of the bounded domain and on Delta(phi). Numerical simulations of the 3D Ising model on a slab geometry are found to be in agreement with such predictions. 
650 4 |a amplitudes 
650 4 |a bootstrap 
650 4 |a conformal field theory 
650 4 |a conformal-invariance 
650 4 |a correlation functions 
650 4 |a critical exponents and amplitudes 
650 4 |a einstein 
650 4 |a surface effects 
700 1 |a Trombettoni, Andrea  |e VerfasserIn  |0 (DE-588)1234501716  |0 (DE-627)1759334863  |4 aut 
773 0 8 |i Enthalten in  |t Journal of statistical mechanics: theory and experiment  |d Bristol : IOP Publ., 2004  |g (2020), 6 vom: Juni, Artikel-ID 063210, Seite 1-27  |h Online-Ressource  |w (DE-627)38184319X  |w (DE-600)2138944-5  |w (DE-576)117867543  |x 1742-5468  |7 nnas  |a Geometry of bounded critical phenomena 
773 1 8 |g year:2020  |g number:6  |g month:06  |g elocationid:063210  |g pages:1-27  |g extent:27  |a Geometry of bounded critical phenomena 
856 4 0 |u https://doi.org/10.1088/1742-5468/ab7f32  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20210601 
993 |a Article 
994 |a 2020 
998 |g 1234499363  |a Gori, Giacomo  |m 1234499363:Gori, Giacomo  |d 130000  |d 130300  |d 700000  |d 728500  |e 130000PG1234499363  |e 130300PG1234499363  |e 700000PG1234499363  |e 728500PG1234499363  |k 0/130000/  |k 1/130000/130300/  |k 0/700000/  |k 1/700000/728500/  |p 1  |x j 
999 |a KXP-PPN1759330469  |e 3933605229 
BIB |a Y 
SER |a journal 
JSO |a {"person":[{"role":"aut","display":"Gori, Giacomo","roleDisplay":"VerfasserIn","given":"Giacomo","family":"Gori"},{"role":"aut","display":"Trombettoni, Andrea","roleDisplay":"VerfasserIn","given":"Andrea","family":"Trombettoni"}],"title":[{"title":"Geometry of bounded critical phenomena","title_sort":"Geometry of bounded critical phenomena"}],"recId":"1759330469","language":["eng"],"note":["Gesehen am 01.06.2021"],"type":{"media":"Online-Ressource","bibl":"article-journal"},"name":{"displayForm":["Giacomo Gori, Andrea Trombettoni"]},"id":{"eki":["1759330469"],"doi":["10.1088/1742-5468/ab7f32"]},"origin":[{"dateIssuedKey":"2020","dateIssuedDisp":"16 June 2020"}],"relHost":[{"title":[{"subtitle":"JSTAT","title":"Journal of statistical mechanics: theory and experiment","title_sort":"Journal of statistical mechanics: theory and experiment"}],"recId":"38184319X","language":["eng"],"disp":"Geometry of bounded critical phenomenaJournal of statistical mechanics: theory and experiment","note":["Gesehen am 04.11.2020"],"type":{"media":"Online-Ressource","bibl":"periodical"},"titleAlt":[{"title":"JSTAT"}],"part":{"pages":"1-27","issue":"6","year":"2020","extent":"27","text":"(2020), 6 vom: Juni, Artikel-ID 063210, Seite 1-27"},"pubHistory":["Nachgewiesen 2004 -"],"id":{"zdb":["2138944-5"],"eki":["38184319X"],"issn":["1742-5468"]},"origin":[{"dateIssuedKey":"2004","publisher":"IOP Publ.","dateIssuedDisp":"2004-","publisherPlace":"Bristol"}],"physDesc":[{"extent":"Online-Ressource"}]}],"physDesc":[{"extent":"27 S."}]} 
SRT |a GORIGIACOMGEOMETRYOF1620