Deep Consensus Network: aggregating predictions to improve object detection in microscopy images

Detection of cells and particles in microscopy images is a common and challenging task. In recent years, detection approaches in computer vision achieved remarkable improvements by leveraging deep learning. Microscopy images pose challenges like small and clustered objects, low signal to noise, and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Wollmann, Thomas (VerfasserIn) , Rohr, Karl (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 24 February 2021
In: Medical image analysis
Year: 2021, Jahrgang: 70, Pages: 1-14
ISSN:1361-8423
DOI:10.1016/j.media.2021.102019
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1016/j.media.2021.102019
Verlag, lizenzpflichtig, Volltext: https://www.sciencedirect.com/science/article/pii/S1361841521000657
Volltext
Verfasserangaben:Thomas Wollmann, Karl Rohr

MARC

LEADER 00000caa a2200000 c 4500
001 1759390852
003 DE-627
005 20220819221124.0
007 cr uuu---uuuuu
008 210602s2021 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.media.2021.102019  |2 doi 
035 |a (DE-627)1759390852 
035 |a (DE-599)KXP1759390852 
035 |a (OCoLC)1341415023 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 32  |2 sdnb 
100 1 |a Wollmann, Thomas  |d 1990-  |e VerfasserIn  |0 (DE-588)116966895X  |0 (DE-627)1035271516  |0 (DE-576)512181942  |4 aut 
245 1 0 |a Deep Consensus Network  |b aggregating predictions to improve object detection in microscopy images  |c Thomas Wollmann, Karl Rohr 
264 1 |c 24 February 2021 
300 |a 14 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 02.06.2021 
520 |a Detection of cells and particles in microscopy images is a common and challenging task. In recent years, detection approaches in computer vision achieved remarkable improvements by leveraging deep learning. Microscopy images pose challenges like small and clustered objects, low signal to noise, and complex shape and appearance, for which current approaches still struggle. We introduce Deep Consensus Network, a new deep neural network for object detection in microscopy images based on object centroids. Our network is trainable end-to-end and comprises a Feature Pyramid Network-based feature extractor, a Centroid Proposal Network, and a layer for ensembling detection hypotheses over all image scales and anchors. We suggest an anchor regularization scheme that favours prior anchors over regressed locations. We also propose a novel loss function based on Normalized Mutual Information to cope with strong class imbalance, which we derive within a Bayesian framework. In addition, we introduce an improved algorithm for Non-Maximum Suppression which significantly reduces the algorithmic complexity. Experiments on synthetic data are performed to provide insights into the properties of the proposed loss function and its robustness. We also applied our method to challenging data from the TUPAC16 mitosis detection challenge and the Particle Tracking Challenge, and achieved results competitive or better than state-of-the-art. 
650 4 |a Deep Learning 
650 4 |a Detection 
650 4 |a Microscopy 
650 4 |a Voting 
700 1 |a Rohr, Karl  |e VerfasserIn  |0 (DE-588)137474466  |0 (DE-627)695829440  |0 (DE-576)303788593  |4 aut 
773 0 8 |i Enthalten in  |t Medical image analysis  |d Amsterdam [u.a.] : Elsevier Science, 1996  |g 70(2021), Artikel-ID 102019, Seite 1-14  |h Online-Ressource  |w (DE-627)306365081  |w (DE-600)1497450-2  |w (DE-576)091204941  |x 1361-8423  |7 nnas  |a Deep Consensus Network aggregating predictions to improve object detection in microscopy images 
773 1 8 |g volume:70  |g year:2021  |g elocationid:102019  |g pages:1-14  |g extent:14  |a Deep Consensus Network aggregating predictions to improve object detection in microscopy images 
856 4 0 |u https://doi.org/10.1016/j.media.2021.102019  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u https://www.sciencedirect.com/science/article/pii/S1361841521000657  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20210602 
993 |a Article 
994 |a 2021 
998 |g 137474466  |a Rohr, Karl  |m 137474466:Rohr, Karl  |d 160000  |d 160100  |e 160000PR137474466  |e 160100PR137474466  |k 0/160000/  |k 1/160000/160100/  |p 2  |y j 
998 |g 116966895X  |a Wollmann, Thomas  |m 116966895X:Wollmann, Thomas  |d 700000  |d 716000  |e 700000PW116966895X  |e 716000PW116966895X  |k 0/700000/  |k 1/700000/716000/  |p 1  |x j 
999 |a KXP-PPN1759390852  |e 3933964725 
BIB |a Y 
SER |a journal 
JSO |a {"origin":[{"dateIssuedKey":"2021","dateIssuedDisp":"24 February 2021"}],"name":{"displayForm":["Thomas Wollmann, Karl Rohr"]},"recId":"1759390852","note":["Gesehen am 02.06.2021"],"id":{"eki":["1759390852"],"doi":["10.1016/j.media.2021.102019"]},"type":{"bibl":"article-journal","media":"Online-Ressource"},"physDesc":[{"extent":"14 S."}],"relHost":[{"origin":[{"dateIssuedDisp":"1996-","publisher":"Elsevier Science","publisherPlace":"Amsterdam [u.a.]","dateIssuedKey":"1996"}],"recId":"306365081","titleAlt":[{"title":"Medical image analysis online"}],"part":{"extent":"14","year":"2021","volume":"70","text":"70(2021), Artikel-ID 102019, Seite 1-14","pages":"1-14"},"pubHistory":["1.1996/97 -"],"type":{"bibl":"periodical","media":"Online-Ressource"},"id":{"eki":["306365081"],"zdb":["1497450-2"],"issn":["1361-8423"]},"note":["Gesehen am 16.05.23"],"disp":"Deep Consensus Network aggregating predictions to improve object detection in microscopy imagesMedical image analysis","title":[{"title_sort":"Medical image analysis","title":"Medical image analysis"}],"physDesc":[{"extent":"Online-Ressource"}],"language":["eng"]}],"title":[{"title_sort":"Deep Consensus Network","title":"Deep Consensus Network","subtitle":"aggregating predictions to improve object detection in microscopy images"}],"person":[{"given":"Thomas","family":"Wollmann","role":"aut","display":"Wollmann, Thomas"},{"role":"aut","display":"Rohr, Karl","given":"Karl","family":"Rohr"}],"language":["eng"]} 
SRT |a WOLLMANNTHDEEPCONSEN2420