On forms, cohomology and BV Laplacians in odd symplectic geometry
We study the cohomology of the complexes of differential, integral and a particular class of pseudo-forms on odd symplectic manifolds taking the wedge product with the symplectic form as a differential. We thus extend the result of Ševera and the related results of Khudaverdian-Voronov on interpret...
Gespeichert in:
| Hauptverfasser: | , , , |
|---|---|
| Dokumenttyp: | Article (Journal) |
| Sprache: | Englisch |
| Veröffentlicht: |
5 April 2021
|
| In: |
Letters in mathematical physics
Year: 2021, Jahrgang: 111, Heft: 2, Pages: 1-32 |
| ISSN: | 1573-0530 |
| DOI: | 10.1007/s11005-021-01384-3 |
| Online-Zugang: | Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1007/s11005-021-01384-3 |
| Verfasserangaben: | R. Catenacci, C.A. Cremonini, P.A. Grassi, S. Noja |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1759475130 | ||
| 003 | DE-627 | ||
| 005 | 20241231001924.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 210602s2021 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.1007/s11005-021-01384-3 |2 doi | |
| 035 | |a (DE-627)1759475130 | ||
| 035 | |a (DE-599)KXP1759475130 | ||
| 035 | |a (OCoLC)1341415268 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 27 |2 sdnb | ||
| 100 | 1 | |a Catenacci, Roberto |e VerfasserIn |0 (DE-588)1234614863 |0 (DE-627)1759474533 |4 aut | |
| 245 | 1 | 0 | |a On forms, cohomology and BV Laplacians in odd symplectic geometry |c R. Catenacci, C.A. Cremonini, P.A. Grassi, S. Noja |
| 264 | 1 | |c 5 April 2021 | |
| 300 | |a 32 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Gesehen am 02.06.2021 | ||
| 520 | |a We study the cohomology of the complexes of differential, integral and a particular class of pseudo-forms on odd symplectic manifolds taking the wedge product with the symplectic form as a differential. We thus extend the result of Ševera and the related results of Khudaverdian-Voronov on interpreting the BV odd Laplacian acting on half-densities on an odd symplectic supermanifold. We show that the cohomology classes are in correspondence with inequivalent Lagrangian submanifolds and that they all define semidensities on them. Further, we introduce new operators that move from one Lagragian submanifold to another and we investigate their relation with the so-called picture changing operators for the de Rham differential. Finally, we prove the isomorphism between the cohomology of the de Rham differential and the cohomology of BV Laplacian in the extended framework of differential, integral and a particular class of pseudo-forms. | ||
| 700 | 1 | |a Cremonini, C. A. |e VerfasserIn |4 aut | |
| 700 | 1 | |8 1\p |a Grassi, Pietro A. |d 1967- |e VerfasserIn |0 (DE-588)1297244109 |0 (DE-627)1853556173 |4 aut | |
| 700 | 1 | |a Noja, Simone |e VerfasserIn |0 (DE-588)1234615118 |0 (DE-627)175947486X |4 aut | |
| 773 | 0 | 8 | |i Enthalten in |t Letters in mathematical physics |d Dordrecht [u.a.] : Springer Science + Business Media B.V, 1975 |g 111(2021), 2, Artikel-ID 44, Seite 1-32 |h Online-Ressource |w (DE-627)271348208 |w (DE-600)1479697-1 |w (DE-576)102669082 |x 1573-0530 |7 nnas |a On forms, cohomology and BV Laplacians in odd symplectic geometry |
| 773 | 1 | 8 | |g volume:111 |g year:2021 |g number:2 |g elocationid:44 |g pages:1-32 |g extent:32 |a On forms, cohomology and BV Laplacians in odd symplectic geometry |
| 856 | 4 | 0 | |u https://doi.org/10.1007/s11005-021-01384-3 |x Verlag |x Resolving-System |z lizenzpflichtig |3 Volltext |
| 883 | |8 1\p |a cgwrk |d 20241001 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | ||
| 951 | |a AR | ||
| 992 | |a 20210602 | ||
| 993 | |a Article | ||
| 994 | |a 2021 | ||
| 998 | |g 1234615118 |a Noja, Simone |m 1234615118:Noja, Simone |d 110000 |d 110100 |d 110000 |d 110400 |e 110000PN1234615118 |e 110100PN1234615118 |e 110000PN1234615118 |e 110400PN1234615118 |k 0/110000/ |k 1/110000/110100/ |k 0/110000/ |k 1/110000/110400/ |p 4 |y j | ||
| 999 | |a KXP-PPN1759475130 |e 3934177794 | ||
| BIB | |a Y | ||
| SER | |a journal | ||
| JSO | |a {"id":{"doi":["10.1007/s11005-021-01384-3"],"eki":["1759475130"]},"origin":[{"dateIssuedKey":"2021","dateIssuedDisp":"5 April 2021"}],"name":{"displayForm":["R. Catenacci, C.A. Cremonini, P.A. Grassi, S. Noja"]},"relHost":[{"type":{"bibl":"periodical","media":"Online-Ressource"},"note":["Gesehen am 01.12.05"],"disp":"On forms, cohomology and BV Laplacians in odd symplectic geometryLetters in mathematical physics","recId":"271348208","language":["eng"],"pubHistory":["1.1975/77 -"],"part":{"extent":"32","text":"111(2021), 2, Artikel-ID 44, Seite 1-32","volume":"111","pages":"1-32","issue":"2","year":"2021"},"title":[{"title_sort":"Letters in mathematical physics","subtitle":"a journal for the rapid dissemination of short contributions in the field of mathematical physics","title":"Letters in mathematical physics"}],"physDesc":[{"extent":"Online-Ressource"}],"origin":[{"dateIssuedDisp":"1975-","dateIssuedKey":"1975","publisher":"Springer Science + Business Media B.V ; Kluwer","publisherPlace":"Dordrecht [u.a.] ; Dordrecht [u.a.]"}],"id":{"zdb":["1479697-1"],"eki":["271348208"],"issn":["1573-0530"]}}],"physDesc":[{"extent":"32 S."}],"title":[{"title":"On forms, cohomology and BV Laplacians in odd symplectic geometry","title_sort":"On forms, cohomology and BV Laplacians in odd symplectic geometry"}],"person":[{"display":"Catenacci, Roberto","roleDisplay":"VerfasserIn","role":"aut","family":"Catenacci","given":"Roberto"},{"family":"Cremonini","given":"C. A.","roleDisplay":"VerfasserIn","display":"Cremonini, C. A.","role":"aut"},{"roleDisplay":"VerfasserIn","display":"Grassi, Pietro A.","role":"aut","family":"Grassi","given":"Pietro A."},{"family":"Noja","given":"Simone","roleDisplay":"VerfasserIn","display":"Noja, Simone","role":"aut"}],"language":["eng"],"recId":"1759475130","type":{"media":"Online-Ressource","bibl":"article-journal"},"note":["Gesehen am 02.06.2021"]} | ||
| SRT | |a CATENACCIRONFORMSCOH5202 | ||