On forms, cohomology and BV Laplacians in odd symplectic geometry

We study the cohomology of the complexes of differential, integral and a particular class of pseudo-forms on odd symplectic manifolds taking the wedge product with the symplectic form as a differential. We thus extend the result of Ševera and the related results of Khudaverdian-Voronov on interpret...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Catenacci, Roberto (VerfasserIn) , Cremonini, C. A. (VerfasserIn) , Grassi, Pietro A. (VerfasserIn) , Noja, Simone (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 5 April 2021
In: Letters in mathematical physics
Year: 2021, Jahrgang: 111, Heft: 2, Pages: 1-32
ISSN:1573-0530
DOI:10.1007/s11005-021-01384-3
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1007/s11005-021-01384-3
Volltext
Verfasserangaben:R. Catenacci, C.A. Cremonini, P.A. Grassi, S. Noja

MARC

LEADER 00000caa a2200000 c 4500
001 1759475130
003 DE-627
005 20241231001924.0
007 cr uuu---uuuuu
008 210602s2021 xx |||||o 00| ||eng c
024 7 |a 10.1007/s11005-021-01384-3  |2 doi 
035 |a (DE-627)1759475130 
035 |a (DE-599)KXP1759475130 
035 |a (OCoLC)1341415268 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 27  |2 sdnb 
100 1 |a Catenacci, Roberto  |e VerfasserIn  |0 (DE-588)1234614863  |0 (DE-627)1759474533  |4 aut 
245 1 0 |a On forms, cohomology and BV Laplacians in odd symplectic geometry  |c R. Catenacci, C.A. Cremonini, P.A. Grassi, S. Noja 
264 1 |c 5 April 2021 
300 |a 32 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 02.06.2021 
520 |a We study the cohomology of the complexes of differential, integral and a particular class of pseudo-forms on odd symplectic manifolds taking the wedge product with the symplectic form as a differential. We thus extend the result of Ševera and the related results of Khudaverdian-Voronov on interpreting the BV odd Laplacian acting on half-densities on an odd symplectic supermanifold. We show that the cohomology classes are in correspondence with inequivalent Lagrangian submanifolds and that they all define semidensities on them. Further, we introduce new operators that move from one Lagragian submanifold to another and we investigate their relation with the so-called picture changing operators for the de Rham differential. Finally, we prove the isomorphism between the cohomology of the de Rham differential and the cohomology of BV Laplacian in the extended framework of differential, integral and a particular class of pseudo-forms. 
700 1 |a Cremonini, C. A.  |e VerfasserIn  |4 aut 
700 1 |8 1\p  |a Grassi, Pietro A.  |d 1967-  |e VerfasserIn  |0 (DE-588)1297244109  |0 (DE-627)1853556173  |4 aut 
700 1 |a Noja, Simone  |e VerfasserIn  |0 (DE-588)1234615118  |0 (DE-627)175947486X  |4 aut 
773 0 8 |i Enthalten in  |t Letters in mathematical physics  |d Dordrecht [u.a.] : Springer Science + Business Media B.V, 1975  |g 111(2021), 2, Artikel-ID 44, Seite 1-32  |h Online-Ressource  |w (DE-627)271348208  |w (DE-600)1479697-1  |w (DE-576)102669082  |x 1573-0530  |7 nnas  |a On forms, cohomology and BV Laplacians in odd symplectic geometry 
773 1 8 |g volume:111  |g year:2021  |g number:2  |g elocationid:44  |g pages:1-32  |g extent:32  |a On forms, cohomology and BV Laplacians in odd symplectic geometry 
856 4 0 |u https://doi.org/10.1007/s11005-021-01384-3  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
883 |8 1\p  |a cgwrk  |d 20241001  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
951 |a AR 
992 |a 20210602 
993 |a Article 
994 |a 2021 
998 |g 1234615118  |a Noja, Simone  |m 1234615118:Noja, Simone  |d 110000  |d 110100  |d 110000  |d 110400  |e 110000PN1234615118  |e 110100PN1234615118  |e 110000PN1234615118  |e 110400PN1234615118  |k 0/110000/  |k 1/110000/110100/  |k 0/110000/  |k 1/110000/110400/  |p 4  |y j 
999 |a KXP-PPN1759475130  |e 3934177794 
BIB |a Y 
SER |a journal 
JSO |a {"id":{"doi":["10.1007/s11005-021-01384-3"],"eki":["1759475130"]},"origin":[{"dateIssuedKey":"2021","dateIssuedDisp":"5 April 2021"}],"name":{"displayForm":["R. Catenacci, C.A. Cremonini, P.A. Grassi, S. Noja"]},"relHost":[{"type":{"bibl":"periodical","media":"Online-Ressource"},"note":["Gesehen am 01.12.05"],"disp":"On forms, cohomology and BV Laplacians in odd symplectic geometryLetters in mathematical physics","recId":"271348208","language":["eng"],"pubHistory":["1.1975/77 -"],"part":{"extent":"32","text":"111(2021), 2, Artikel-ID 44, Seite 1-32","volume":"111","pages":"1-32","issue":"2","year":"2021"},"title":[{"title_sort":"Letters in mathematical physics","subtitle":"a journal for the rapid dissemination of short contributions in the field of mathematical physics","title":"Letters in mathematical physics"}],"physDesc":[{"extent":"Online-Ressource"}],"origin":[{"dateIssuedDisp":"1975-","dateIssuedKey":"1975","publisher":"Springer Science + Business Media B.V ; Kluwer","publisherPlace":"Dordrecht [u.a.] ; Dordrecht [u.a.]"}],"id":{"zdb":["1479697-1"],"eki":["271348208"],"issn":["1573-0530"]}}],"physDesc":[{"extent":"32 S."}],"title":[{"title":"On forms, cohomology and BV Laplacians in odd symplectic geometry","title_sort":"On forms, cohomology and BV Laplacians in odd symplectic geometry"}],"person":[{"display":"Catenacci, Roberto","roleDisplay":"VerfasserIn","role":"aut","family":"Catenacci","given":"Roberto"},{"family":"Cremonini","given":"C. A.","roleDisplay":"VerfasserIn","display":"Cremonini, C. A.","role":"aut"},{"roleDisplay":"VerfasserIn","display":"Grassi, Pietro A.","role":"aut","family":"Grassi","given":"Pietro A."},{"family":"Noja","given":"Simone","roleDisplay":"VerfasserIn","display":"Noja, Simone","role":"aut"}],"language":["eng"],"recId":"1759475130","type":{"media":"Online-Ressource","bibl":"article-journal"},"note":["Gesehen am 02.06.2021"]} 
SRT |a CATENACCIRONFORMSCOH5202