Fully automatic spatiotemporal segmentation of 3D LiDAR time series for the extraction of natural surface changes

Geographic observation benefits from the increasing availability of time series of 3D geospatial data, which allow analysis of change processes at high temporal detail and over extensive periods. In this context, the demand for advanced methods to detect and extract topographic surface changes from...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Anders, Katharina (VerfasserIn) , Winiwarter, Lukas (VerfasserIn) , Mara, Hubert (VerfasserIn) , Lindenbergh, Roderik (VerfasserIn) , Vos, Sander (VerfasserIn) , Höfle, Bernhard (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 8 February 2021
In: ISPRS journal of photogrammetry and remote sensing
Year: 2021, Jahrgang: 173, Pages: 297-308
ISSN:0924-2716
DOI:10.1016/j.isprsjprs.2021.01.015
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1016/j.isprsjprs.2021.01.015
Verlag, lizenzpflichtig, Volltext: https://www.sciencedirect.com/science/article/pii/S0924271621000216
Volltext
Verfasserangaben:Katharina Anders, Lukas Winiwarter, Hubert Mara, Roderik Lindenbergh, Sander E. Vos, Bernhard Höfle

MARC

LEADER 00000caa a2200000 c 4500
001 1759917842
003 DE-627
005 20240418163038.0
007 cr uuu---uuuuu
008 210607s2021 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.isprsjprs.2021.01.015  |2 doi 
035 |a (DE-627)1759917842 
035 |a (DE-599)KXP1759917842 
035 |a (OCoLC)1341415375 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 61  |2 sdnb 
100 1 |a Anders, Katharina  |d 1990-  |e VerfasserIn  |0 (DE-588)1128842580  |0 (DE-627)883601109  |0 (DE-576)48610298X  |4 aut 
245 1 0 |a Fully automatic spatiotemporal segmentation of 3D LiDAR time series for the extraction of natural surface changes  |c Katharina Anders, Lukas Winiwarter, Hubert Mara, Roderik Lindenbergh, Sander E. Vos, Bernhard Höfle 
264 1 |c 8 February 2021 
300 |a 12 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 07.06.2021 
520 |a Geographic observation benefits from the increasing availability of time series of 3D geospatial data, which allow analysis of change processes at high temporal detail and over extensive periods. In this context, the demand for advanced methods to detect and extract topographic surface changes from these 4D geospatial data emerges. Changes in natural scenes occur with varying magnitude, duration, spatial extent, and change rate, and the timing of their occurrence is not known. Standard pairwise change detection requires the selection of fixed analysis periods and the specification of magnitude thresholds to determine accumulation or erosion forms. In settings with continuous surface morphology and dynamic changes to the surface due to material transport, such change forms are typically temporary and may be missed or aggregated if they occur with spatial and/or temporal overlap. This is overcome with the extraction of 4D objects-by-change (4D-OBCs). These objects are obtained by firstly detecting surface changes in the temporal domain at locations in the scene. Subsequently, they are spatially delineated by considering the full history of surface change during region growing from the seed location of a detected change. To perform this spatiotemporal segmentation systematically for entire 3D time series, we develop a fully automatic approach of seed detection and selection, combined with locally adaptive thresholding for region growing of individual objects with varying change properties. We apply our workflow to a five-months hourly time series of around 3,000 terrestrial laser scanning point clouds acquired for coastal monitoring at a sandy beach in The Netherlands. This provides 2,021 4D-OBCs as extracted accumulation or erosion forms. Results are validated through majority agreement of six expert analysts, who evaluate the segmentation performance at sample locations throughout the scene. Accordingly, our method extracts surface changes with an error of omission of 4.7% and an error of commission of 16.6%. We examine the results and provide considerations how postprocessing of segments can further improve the change analysis workflow. The developed approach thereby provides a powerful tool for automatic change analysis in 4D geospatial data, namely to detect and delineate natural surface changes across space and time. 
650 4 |a 4D object-by-change 
650 4 |a Change detection 
650 4 |a Coastal monitoring 
650 4 |a Point clouds 
650 4 |a Terrestrial laser scanning 
700 1 |a Winiwarter, Lukas  |d 1994-  |e VerfasserIn  |0 (DE-588)1198882808  |0 (DE-627)1681036118  |4 aut 
700 1 |a Mara, Hubert  |d 1975-  |e VerfasserIn  |0 (DE-588)1028750749  |0 (DE-627)731565584  |0 (DE-576)376225076  |4 aut 
700 1 |a Lindenbergh, Roderik  |e VerfasserIn  |4 aut 
700 1 |a Vos, Sander  |e VerfasserIn  |0 (DE-588)1256888036  |0 (DE-627)1801036799  |4 aut 
700 1 |a Höfle, Bernhard  |e VerfasserIn  |0 (DE-588)1019895403  |0 (DE-627)691049297  |0 (DE-576)358986753  |4 aut 
773 0 8 |i Enthalten in  |a International Society for Photogrammetry and Remote Sensing  |t ISPRS journal of photogrammetry and remote sensing  |d Amsterdam [u.a.] : Elsevier, 1989  |g 173(2021), Seite 297-308  |h Online-Ressource  |w (DE-627)320504557  |w (DE-600)2012663-3  |w (DE-576)096806567  |x 0924-2716  |7 nnas 
773 1 8 |g volume:173  |g year:2021  |g pages:297-308  |g extent:12  |a Fully automatic spatiotemporal segmentation of 3D LiDAR time series for the extraction of natural surface changes 
856 4 0 |u https://doi.org/10.1016/j.isprsjprs.2021.01.015  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u https://www.sciencedirect.com/science/article/pii/S0924271621000216  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20210607 
993 |a Article 
994 |a 2021 
998 |g 1019895403  |a Höfle, Bernhard  |m 1019895403:Höfle, Bernhard  |d 120000  |d 120700  |e 120000PH1019895403  |e 120700PH1019895403  |k 0/120000/  |k 1/120000/120700/  |p 6  |y j 
998 |g 1028750749  |a Mara, Hubert  |m 1028750749:Mara, Hubert  |d 700000  |d 708000  |e 700000PM1028750749  |e 708000PM1028750749  |k 0/700000/  |k 1/700000/708000/  |p 3 
998 |g 1198882808  |a Winiwarter, Lukas  |m 1198882808:Winiwarter, Lukas  |d 120000  |d 120700  |e 120000PW1198882808  |e 120700PW1198882808  |k 0/120000/  |k 1/120000/120700/  |p 2 
998 |g 1128842580  |a Anders, Katharina  |m 1128842580:Anders, Katharina  |d 120000  |d 120700  |e 120000PA1128842580  |e 120700PA1128842580  |k 0/120000/  |k 1/120000/120700/  |p 1  |x j 
999 |a KXP-PPN1759917842  |e 3935126883 
BIB |a Y 
SER |a journal 
JSO |a {"language":["eng"],"type":{"media":"Online-Ressource","bibl":"article-journal"},"origin":[{"dateIssuedKey":"2021","dateIssuedDisp":"8 February 2021"}],"relHost":[{"titleAlt":[{"title":"Journal of photogrammetry and remote sensing"}],"pubHistory":["44.1989/90 - 66.2011; Vol. 67.2012 -"],"corporate":[{"display":"International Society for Photogrammetry and Remote Sensing","role":"aut","roleDisplay":"VerfasserIn"}],"recId":"320504557","id":{"eki":["320504557"],"zdb":["2012663-3"],"issn":["0924-2716"]},"title":[{"subtitle":"official publication of the International Society for Photogrammetry and Remote Sensing (ISPRS)","title":"ISPRS journal of photogrammetry and remote sensing","title_sort":"ISPRS journal of photogrammetry and remote sensing"}],"note":["Gesehen am 03.05.07"],"disp":"International Society for Photogrammetry and Remote SensingISPRS journal of photogrammetry and remote sensing","physDesc":[{"extent":"Online-Ressource"}],"part":{"text":"173(2021), Seite 297-308","volume":"173","year":"2021","extent":"12","pages":"297-308"},"type":{"media":"Online-Ressource","bibl":"periodical"},"origin":[{"publisher":"Elsevier","publisherPlace":"Amsterdam [u.a.]","dateIssuedKey":"1989","dateIssuedDisp":"1989-"}],"language":["eng"]}],"person":[{"family":"Anders","roleDisplay":"VerfasserIn","given":"Katharina","display":"Anders, Katharina","role":"aut"},{"given":"Lukas","display":"Winiwarter, Lukas","role":"aut","family":"Winiwarter","roleDisplay":"VerfasserIn"},{"family":"Mara","roleDisplay":"VerfasserIn","role":"aut","display":"Mara, Hubert","given":"Hubert"},{"roleDisplay":"VerfasserIn","family":"Lindenbergh","role":"aut","display":"Lindenbergh, Roderik","given":"Roderik"},{"family":"Vos","roleDisplay":"VerfasserIn","given":"Sander","display":"Vos, Sander","role":"aut"},{"given":"Bernhard","display":"Höfle, Bernhard","role":"aut","family":"Höfle","roleDisplay":"VerfasserIn"}],"physDesc":[{"extent":"12 S."}],"name":{"displayForm":["Katharina Anders, Lukas Winiwarter, Hubert Mara, Roderik Lindenbergh, Sander E. Vos, Bernhard Höfle"]},"note":["Gesehen am 07.06.2021"],"id":{"eki":["1759917842"],"doi":["10.1016/j.isprsjprs.2021.01.015"]},"title":[{"title_sort":"Fully automatic spatiotemporal segmentation of 3D LiDAR time series for the extraction of natural surface changes","title":"Fully automatic spatiotemporal segmentation of 3D LiDAR time series for the extraction of natural surface changes"}],"recId":"1759917842"} 
SRT |a ANDERSKATHFULLYAUTOM8202