Newton-Picard preconditioners for time-periodic parabolic optimal control problems

We prove existence and uniqueness of solutions of an optimization problem with time-periodic parabolic partial differential equation constraints and show that the solution inherits high smoothness properties from the given data. We use the theory of semigroups in conjunction with spectral decomposit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Hante, Falk Michael (VerfasserIn) , Mommer, Mario Salvador (VerfasserIn) , Potschka, Andreas (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: September 22, 2015
In: SIAM journal on numerical analysis
Year: 2015, Jahrgang: 53, Heft: 5, Pages: 2206-2225
ISSN:1095-7170
DOI:10.1137/140967969
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1137/140967969
Verlag, lizenzpflichtig, Volltext: https://epubs.siam.org/doi/10.1137/140967969
Volltext
Verfasserangaben:F.M. Hante, M.S. Mommer, and A. Potschka

MARC

LEADER 00000caa a2200000 c 4500
001 1760214213
003 DE-627
005 20220819225056.0
007 cr uuu---uuuuu
008 210610s2015 xx |||||o 00| ||eng c
024 7 |a 10.1137/140967969  |2 doi 
035 |a (DE-627)1760214213 
035 |a (DE-599)KXP1760214213 
035 |a (OCoLC)1341415362 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 27  |2 sdnb 
100 1 |a Hante, Falk Michael  |e VerfasserIn  |0 (DE-588)142268720  |0 (DE-627)635208695  |0 (DE-576)32981852X  |4 aut 
245 1 0 |a Newton-Picard preconditioners for time-periodic parabolic optimal control problems  |c F.M. Hante, M.S. Mommer, and A. Potschka 
264 1 |c September 22, 2015 
300 |a 20 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 10.06.2021 
520 |a We prove existence and uniqueness of solutions of an optimization problem with time-periodic parabolic partial differential equation constraints and show that the solution inherits high smoothness properties from the given data. We use the theory of semigroups in conjunction with spectral decompositions of their generators in order to derive detailed representation formulas for shooting operators in function space and their adjoints. A spectral truncation approach delivers a self-adjoint indefinite Newton--Picard preconditioner for the saddle-point system of optimality conditions in function space. We show that this preconditioner leads to convergence in a function space fixed-point iteration. Moreover, we discuss that this preconditioner can be approximated well by a two-grid approach. We address some implementation issues and present numerical results for three-dimensional instationary problems with more than 100,000,000 degrees of freedom. 
700 1 |a Mommer, Mario Salvador  |d 1973-  |e VerfasserIn  |0 (DE-588)130244481  |0 (DE-627)495827819  |0 (DE-576)29808449X  |4 aut 
700 1 |a Potschka, Andreas  |d 1980-  |e VerfasserIn  |0 (DE-588)1019443391  |0 (DE-627)685041166  |0 (DE-576)358073995  |4 aut 
773 0 8 |i Enthalten in  |a Society for Industrial and Applied Mathematics  |t SIAM journal on numerical analysis  |d Philadelphia, Pa. : SIAM, 1966  |g 53(2015), 5, Seite 2206-2225  |h Online-Ressource  |w (DE-627)266885446  |w (DE-600)1468409-3  |w (DE-576)075961660  |x 1095-7170  |7 nnas 
773 1 8 |g volume:53  |g year:2015  |g number:5  |g pages:2206-2225  |g extent:20  |a Newton-Picard preconditioners for time-periodic parabolic optimal control problems 
856 4 0 |u https://doi.org/10.1137/140967969  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u https://epubs.siam.org/doi/10.1137/140967969  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20210610 
993 |a Article 
994 |a 2015 
998 |g 1019443391  |a Potschka, Andreas  |m 1019443391:Potschka, Andreas  |d 700000  |d 708000  |e 700000PP1019443391  |e 708000PP1019443391  |k 0/700000/  |k 1/700000/708000/  |p 3  |y j 
999 |a KXP-PPN1760214213  |e 3936594171 
BIB |a Y 
SER |a journal 
JSO |a {"id":{"eki":["1760214213"],"doi":["10.1137/140967969"]},"origin":[{"dateIssuedDisp":"September 22, 2015","dateIssuedKey":"2015"}],"name":{"displayForm":["F.M. Hante, M.S. Mommer, and A. Potschka"]},"relHost":[{"title":[{"title_sort":"SIAM journal on numerical analysis","title":"SIAM journal on numerical analysis"}],"recId":"266885446","language":["eng"],"corporate":[{"role":"aut","display":"Society for Industrial and Applied Mathematics","roleDisplay":"VerfasserIn"}],"disp":"Society for Industrial and Applied MathematicsSIAM journal on numerical analysis","type":{"media":"Online-Ressource","bibl":"periodical"},"note":["Gesehen am 02.07.2021"],"titleAlt":[{"title":"Journal on numerical analysis"}],"part":{"pages":"2206-2225","issue":"5","year":"2015","extent":"20","volume":"53","text":"53(2015), 5, Seite 2206-2225"},"pubHistory":["3.1966 -"],"name":{"displayForm":["Society for Industrial and Applied Mathematics"]},"id":{"eki":["266885446"],"zdb":["1468409-3"],"issn":["1095-7170"]},"origin":[{"dateIssuedDisp":"1966-","publisher":"SIAM","dateIssuedKey":"1966","publisherPlace":"Philadelphia, Pa."}],"physDesc":[{"extent":"Online-Ressource"}]}],"physDesc":[{"extent":"20 S."}],"title":[{"title":"Newton-Picard preconditioners for time-periodic parabolic optimal control problems","title_sort":"Newton-Picard preconditioners for time-periodic parabolic optimal control problems"}],"person":[{"role":"aut","roleDisplay":"VerfasserIn","display":"Hante, Falk Michael","given":"Falk Michael","family":"Hante"},{"role":"aut","roleDisplay":"VerfasserIn","display":"Mommer, Mario Salvador","given":"Mario Salvador","family":"Mommer"},{"role":"aut","display":"Potschka, Andreas","roleDisplay":"VerfasserIn","given":"Andreas","family":"Potschka"}],"recId":"1760214213","language":["eng"],"type":{"media":"Online-Ressource","bibl":"article-journal"},"note":["Gesehen am 10.06.2021"]} 
SRT |a HANTEFALKMNEWTONPICA2220