Heidelberg colorectal data set for surgical data science in the sensor operating room

Image-based tracking of medical instruments is an integral part of surgical data science applications. Previous research has addressed the tasks of detecting, segmenting and tracking medical instruments based on laparoscopic video data. However, the proposed methods still tend to fail when applied t...

Full description

Saved in:
Bibliographic Details
Main Authors: Maier-Hein, Lena (Author) , Wagner, Martin (Author) , Roß, Tobias (Author) , Reinke, Annika (Author) , Bodenstedt, Sebastian (Author) , Full, Peter M. (Author) , Hempe, Hellena (Author) , Mindroc-Filimon, Diana (Author) , Godau, Patrick (Author) , Tran, Thuy Nuong (Author) , Bruno, Pierangela (Author) , Kisilenko, Anna (Author) , Müller, Benjamin (Author) , Davitashvili, Tornike (Author) , Capek, Manuela (Author) , Tizabi, Minu (Author) , Eisenmann, Matthias (Author) , Adler, Tim (Author) , Gröhl, Janek (Author) , Schellenberg, Melanie (Author) , Seidlitz, Silvia (Author) , Lai, T. Y. Emmy (Author) , Pekdemir, Bünyamin (Author) , Roethlingshoefer, Veith (Author) , Both, Fabian (Author) , Bittel, Sebastian (Author) , Mengler, Marc (Author) , Mündermann, Lars (Author) , Apitz, Martin (Author) , Kopp-Schneider, Annette (Author) , Speidel, Stefanie (Author) , Nickel, Felix (Author) , Probst, Pascal (Author) , Kenngott, Hannes Götz (Author) , Müller, Beat P. (Author)
Format: Article (Journal)
Language:English
Published: 12 April 2021
In: Scientific data
Year: 2021, Volume: 8, Pages: 1-11
ISSN:2052-4463
DOI:10.1038/s41597-021-00882-2
Online Access:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1038/s41597-021-00882-2
Verlag, lizenzpflichtig, Volltext: https://www.nature.com/articles/s41597-021-00882-2
Get full text
Author Notes:Lena Maier-Hein, Martin Wagner, Tobias Ross, Annika Reinke, Sebastian Bodenstedt, Peter M. Full, Hellena Hempe, Diana Mindroc-Filimon, Patrick Scholz, Thuy Nuong Tran, Pierangela Bruno, Anna Kisilenko, Benjamin Müller, Tornike Davitashvili, Manuela Capek, Minu D. Tizabi, Matthias Eisenmann, Tim J. Adler, Janek Gröhl, Melanie Schellenberg, Silvia Seidlitz, T. Y. Emmy Lai, Bünyamin Pekdemir, Veith Roethlingshoefer, Fabian Both, Sebastian Bittel, Marc Mengler, Lars Mündermann, Martin Apitz, Annette Kopp-Schneider, Stefanie Speidel, Felix Nickel, Pascal Probst, Hannes G. Kenngott & Beat P. Müller-Stich
Description
Summary:Image-based tracking of medical instruments is an integral part of surgical data science applications. Previous research has addressed the tasks of detecting, segmenting and tracking medical instruments based on laparoscopic video data. However, the proposed methods still tend to fail when applied to challenging images and do not generalize well to data they have not been trained on. This paper introduces the Heidelberg Colorectal (HeiCo) data set - the first publicly available data set enabling comprehensive benchmarking of medical instrument detection and segmentation algorithms with a specific emphasis on method robustness and generalization capabilities. Our data set comprises 30 laparoscopic videos and corresponding sensor data from medical devices in the operating room for three different types of laparoscopic surgery. Annotations include surgical phase labels for all video frames as well as information on instrument presence and corresponding instance-wise segmentation masks for surgical instruments (if any) in more than 10,000 individual frames. The data has successfully been used to organize international competitions within the Endoscopic Vision Challenges 2017 and 2019.
Item Description:Gesehen am 15.06.2021
Physical Description:Online Resource
ISSN:2052-4463
DOI:10.1038/s41597-021-00882-2