Using the causal inference framework to support individualized drug treatment decisions based on observational healthcare data

When healthcare professionals have the choice between several drug treatments for their patients, they often experience considerable decision uncertainty because many decisions simply have no single “best” choice. The challenges are manifold and include that guideline recommendations focus on random...

Full description

Saved in:
Bibliographic Details
Main Authors: Meid, Andreas (Author) , Ruff, Carmen (Author) , Wirbka, Lucas (Author) , Stoll, Felicitas E. (Author) , Seidling, Hanna (Author) , Groll, Andreas (Author) , Haefeli, Walter E. (Author)
Format: Article (Journal)
Language:English
Published: 2 November 2020
In: Clinical epidemiology
Year: 2020, Volume: 12, Pages: 1223-1234
ISSN:1179-1349
DOI:10.2147/CLEP.S274466
Online Access:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.2147/CLEP.S274466
Verlag, lizenzpflichtig, Volltext: https://www.dovepress.com/using-the-causal-inference-framework-to-support-individualized-drug-tr-peer-reviewed-fulltext-article-CLEP
Get full text
Author Notes:Andreas D. Meid, Carmen Ruff, Lucas Wirbka, Felicitas Stoll, Hanna M. Seidling, Andreas Groll, Walter E. Haefeli

MARC

LEADER 00000caa a2200000 c 4500
001 1760905615
003 DE-627
005 20220819235623.0
007 cr uuu---uuuuu
008 210621s2020 xx |||||o 00| ||eng c
024 7 |a 10.2147/CLEP.S274466  |2 doi 
035 |a (DE-627)1760905615 
035 |a (DE-599)KXP1760905615 
035 |a (OCoLC)1341416602 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 33  |2 sdnb 
100 1 |a Meid, Andreas  |d 1981-  |e VerfasserIn  |0 (DE-588)1076301991  |0 (DE-627)834660377  |0 (DE-576)445184582  |4 aut 
245 1 0 |a Using the causal inference framework to support individualized drug treatment decisions based on observational healthcare data  |c Andreas D. Meid, Carmen Ruff, Lucas Wirbka, Felicitas Stoll, Hanna M. Seidling, Andreas Groll, Walter E. Haefeli 
264 1 |c 2 November 2020 
300 |a 12 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 21.06.2021 
520 |a When healthcare professionals have the choice between several drug treatments for their patients, they often experience considerable decision uncertainty because many decisions simply have no single “best” choice. The challenges are manifold and include that guideline recommendations focus on randomized controlled trials whose populations do not necessarily correspond to specific patients in everyday treatment. Further reasons may be insufficient evidence on outcomes, lack of direct comparison of distinct options, and the need to individually balance benefits and risks. All these situations will occur in routine care, its outcomes will be mirrored in routine data, and could thus be used to guide decisions. We propose a concept to facilitate decision-making by exploiting this wealth of information. Our working example for illustration assumes that the response to a particular (drug) treatment can substantially differ between individual patients depending on their characteristics (het-erogeneous treatment effects, HTE), and that decisions will be more precise if they are based on real-world evidence of HTE considering this information. However, such methods must account for confounding by indication and effect measure modification, eg, by adequately using machine learning methods or parametric regressions to estimate individual responses to pharmacological treatments. The better a model assesses the underlying HTE, the more accurate are predicted probabilities of treatment response. After probabilities for treatment- related benefit and harm have been calculated, decision rules can be applied and patient preferences can be considered to provide individual recommendations. Emulated trials in observational data are a straightforward technique to predict the effects of such decision rules when applied in routine care. Prediction-based decision rules from routine data have the potential to efficiently supplement clinical guidelines and support healthcare professionals in creating personalized treatment plans using decision support tools. 
700 1 |a Ruff, Carmen  |d 1989-  |e VerfasserIn  |0 (DE-588)1181827671  |0 (DE-627)1662402171  |4 aut 
700 1 |a Wirbka, Lucas  |d 1995-  |e VerfasserIn  |0 (DE-588)1213310687  |0 (DE-627)1703847997  |4 aut 
700 1 |a Stoll, Felicitas E.  |d 1984-  |e VerfasserIn  |0 (DE-588)1041963432  |0 (DE-627)76804832X  |0 (DE-576)393609952  |4 aut 
700 1 |a Seidling, Hanna  |d 1982-  |e VerfasserIn  |0 (DE-588)140696512  |0 (DE-627)703758861  |0 (DE-576)319591433  |4 aut 
700 1 |a Groll, Andreas  |e VerfasserIn  |0 (DE-588)1019867914  |0 (DE-627)685562867  |0 (DE-576)359015182  |4 aut 
700 1 |a Haefeli, Walter E.  |d 1958-  |e VerfasserIn  |0 (DE-588)124572359  |0 (DE-627)656806141  |0 (DE-576)340514221  |4 aut 
773 0 8 |i Enthalten in  |t Clinical epidemiology  |d Albany, Auckland : Dove Medical Press, 2009  |g 12(2020), Seite 1223-1234  |h Online-Ressource  |w (DE-627)600305392  |w (DE-600)2494772-6  |w (DE-576)306840553  |x 1179-1349  |7 nnas  |a Using the causal inference framework to support individualized drug treatment decisions based on observational healthcare data 
773 1 8 |g volume:12  |g year:2020  |g pages:1223-1234  |g extent:12  |a Using the causal inference framework to support individualized drug treatment decisions based on observational healthcare data 
856 4 0 |u https://doi.org/10.2147/CLEP.S274466  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u https://www.dovepress.com/using-the-causal-inference-framework-to-support-individualized-drug-tr-peer-reviewed-fulltext-article-CLEP  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20210621 
993 |a Article 
994 |a 2020 
998 |g 124572359  |a Haefeli, Walter E.  |m 124572359:Haefeli, Walter E.  |d 910000  |d 910100  |e 910000PH124572359  |e 910100PH124572359  |k 0/910000/  |k 1/910000/910100/  |p 7  |y j 
998 |g 140696512  |a Seidling, Hanna  |m 140696512:Seidling, Hanna  |d 910000  |d 910100  |d 50000  |e 910000PS140696512  |e 910100PS140696512  |e 50000PS140696512  |k 0/910000/  |k 1/910000/910100/  |k 0/50000/  |p 5 
998 |g 1041963432  |a Stoll, Felicitas E.  |m 1041963432:Stoll, Felicitas E.  |d 910000  |d 910100  |e 910000PS1041963432  |e 910100PS1041963432  |k 0/910000/  |k 1/910000/910100/  |p 4 
998 |g 1213310687  |a Wirbka, Lucas  |m 1213310687:Wirbka, Lucas  |d 910000  |d 910100  |e 910000PW1213310687  |e 910100PW1213310687  |k 0/910000/  |k 1/910000/910100/  |p 3 
998 |g 1181827671  |a Ruff, Carmen  |m 1181827671:Ruff, Carmen  |d 910000  |d 910100  |e 910000PR1181827671  |e 910100PR1181827671  |k 0/910000/  |k 1/910000/910100/  |p 2 
998 |g 1076301991  |a Meid, Andreas  |m 1076301991:Meid, Andreas  |d 910000  |d 910100  |e 910000PM1076301991  |e 910100PM1076301991  |k 0/910000/  |k 1/910000/910100/  |p 1  |x j 
999 |a KXP-PPN1760905615  |e 3940361151 
BIB |a Y 
SER |a journal 
JSO |a {"type":{"bibl":"article-journal","media":"Online-Ressource"},"origin":[{"dateIssuedDisp":"2 November 2020","dateIssuedKey":"2020"}],"language":["eng"],"person":[{"display":"Meid, Andreas","role":"aut","given":"Andreas","roleDisplay":"VerfasserIn","family":"Meid"},{"roleDisplay":"VerfasserIn","family":"Ruff","given":"Carmen","role":"aut","display":"Ruff, Carmen"},{"roleDisplay":"VerfasserIn","family":"Wirbka","role":"aut","display":"Wirbka, Lucas","given":"Lucas"},{"display":"Stoll, Felicitas E.","role":"aut","given":"Felicitas E.","roleDisplay":"VerfasserIn","family":"Stoll"},{"family":"Seidling","roleDisplay":"VerfasserIn","given":"Hanna","role":"aut","display":"Seidling, Hanna"},{"family":"Groll","roleDisplay":"VerfasserIn","display":"Groll, Andreas","role":"aut","given":"Andreas"},{"display":"Haefeli, Walter E.","role":"aut","given":"Walter E.","roleDisplay":"VerfasserIn","family":"Haefeli"}],"physDesc":[{"extent":"12 S."}],"name":{"displayForm":["Andreas D. Meid, Carmen Ruff, Lucas Wirbka, Felicitas Stoll, Hanna M. Seidling, Andreas Groll, Walter E. Haefeli"]},"relHost":[{"disp":"Using the causal inference framework to support individualized drug treatment decisions based on observational healthcare dataClinical epidemiology","recId":"600305392","id":{"zdb":["2494772-6"],"eki":["600305392"],"issn":["1179-1349"]},"title":[{"title_sort":"Clinical epidemiology","title":"Clinical epidemiology"}],"pubHistory":["1.2009 -"],"type":{"media":"Online-Ressource","bibl":"periodical"},"origin":[{"publisherPlace":"Albany, Auckland","dateIssuedKey":"2009","dateIssuedDisp":"2009-","publisher":"Dove Medical Press"}],"language":["eng"],"physDesc":[{"extent":"Online-Ressource"}],"part":{"volume":"12","text":"12(2020), Seite 1223-1234","pages":"1223-1234","extent":"12","year":"2020"}}],"recId":"1760905615","id":{"eki":["1760905615"],"doi":["10.2147/CLEP.S274466"]},"title":[{"title":"Using the causal inference framework to support individualized drug treatment decisions based on observational healthcare data","title_sort":"Using the causal inference framework to support individualized drug treatment decisions based on observational healthcare data"}],"note":["Gesehen am 21.06.2021"]} 
SRT |a MEIDANDREAUSINGTHECA2202