Pieri type rules and GL(2|2) tensor products

We derive a closed formula for the tensor product of a family of mixed tensors using Deligne’s interpolating category $\underline {Rep}(GL_{0})$. We use this formula to compute the tensor product of a family of irreducible GL(n|n)-representations. This includes the tensor product of any two maximal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Heidersdorf, Thorsten (VerfasserIn) , Weissauer, Rainer (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 2021
In: Algebras and representation theory
Year: 2021, Jahrgang: 24, Heft: 2, Pages: 425-451
ISSN:1572-9079
DOI:10.1007/s10468-020-09954-0
Online-Zugang:Resolving-System, lizenzpflichtig, Volltext: https://doi.org/10.1007/s10468-020-09954-0
Verlag, lizenzpflichtig, Volltext: https://link.springer.com/article/10.1007/s10468-020-09954-0
Volltext
Verfasserangaben:Thorsten Heidersdorf, Rainer Weissauer
Beschreibung
Zusammenfassung:We derive a closed formula for the tensor product of a family of mixed tensors using Deligne’s interpolating category $\underline {Rep}(GL_{0})$. We use this formula to compute the tensor product of a family of irreducible GL(n|n)-representations. This includes the tensor product of any two maximal atypical irreducible representations of GL(2|2).
Beschreibung:Published online: 19 March 2020
Gesehen am 22.06.2021
Beschreibung:Online Resource
ISSN:1572-9079
DOI:10.1007/s10468-020-09954-0